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Calculus Story

Calculus, known in its early history as infinitesimal calculus, is a mathematical discipline
focused on limits, functions, derivatives, integrals, and infinite series. Isaac
Newton and Gottfried Leibniz independently invented calculus in the mid-17th century.
However, each inventor claimed that the other one stole his work in a bitter dispute that
continued until the end of their lives.

The main ideas which underpin the calculus developed over a very long period of time indeed.
The first steps were taken by Greek mathematicians.

To the Greeks numbers were ratios of integers so the number line had "holes" in it. They got
round this difficulty by using lengths, areas and volumes in addition to numbers for, to the
Greeks, not all lengths were numbers.

Zeno of Elea, about 450 BC, gave a number of problems which were based on the infinite. For
example, he argued that motion is impossible.

If a body moves from A to B then before it reaches B it passes through the mid-point, say B1 of
AB. Now to move to B1 it must first reach the mid-point B2 of AB1. Continue this argument to see
that A must move through an infinite number of distances and so cannot move.

Leucippus, Democritus and Antiphon all made contributions to the Greek method of exhaustion
which was put on a scientific basis by Eudoxus about 370 BC. The method of exhaustion is so
called because one thinks of the areas measured expanding so that they account for more and
more of the required area.

However Archimedes, around 225 BC, made one of the most significant of the Greek
contributions. His first important advance was to show that the area of a segment of a parabola
is 4/3 the area of a triangle with the same base and vertex and 2/3 of the area of the circumscribed
parallelogram. Archimedes constructed an infinite sequence of triangles starting with one of
area A and continually adding further triangles between the existing ones and the parabola to get
areas

A, A + A/4, A + A/4 + A/16, A + A/4 + A/16 + A/64, ...

The area of the segment of the parabola is therefore
A (1 + 1/4 + 1/4

2 + 1/43 + ....) = (4/3) A.

This is the first known example of the summation of
an infinite series.

Archimedes used the method of exhaustion to find an
approximation to the area of a circle. This, of course,
is an early example of integration which led to
approximate values of π.  
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Among other 'integrations' by Archimedes were the volume and surface area of a sphere, the
volume and area of a cone, the surface area of an ellipse, the volume of any segment of a
paraboloid of revolution and a segment of an hyperboloid of revolution.

No further progress was made until the 16th Century when mechanics began to drive
mathematicians to examine problems such as centres of gravity. Luca Valerio (1552-1618)
published De quadratura parabolae p in Rome (1606) which continued the Greek methods of
attacking these type of area problems. Kepler, in his work on planetary motion, had to find the
area of sectors of an ellipse. His method consisted of thinking of areas as sums of lines, another
crude form of integration, but Kepler had little time for Greek rigour and was rather lucky to
obtain the correct answer after making two cancelling errors in this work.

In the Middle East, Abu Ali al-Hassan Ibn al-Haytham (ca. 965-1041) known in the west at as
Alhacen or Alhazen derived a formula for the sum of fourth powers. He used the results to carry
out what would now be called an integration, where the formulas for the sums of integral squares
and fourth powers allowed him to calculate the volume of a paraboloid. He was able to
generalize his result for the integrals of polynomials up to the fourth degree. He thus came close
to finding a general formula for the integrals of polynomials, but he was not concerned with any
polynomials higher than the fourth degree.

In the 14th century, Indian mathematician Madhava of Sangamagrama and the Kerala School of
Astronomy and Mathematics stated components of calculus such as the Taylor series and infinite
series approximations. However, they were not able to combine many differing ideas under the
two unifying themes of the derivative and the integral, show the connection between the two, and
turn calculus into the powerful problem-solving tool we have today.

Three mathematicians, born within three years of each other, were the next to make major
contributions. They were Fermat, Roberval and Cavalieri. Cavalieri was led to his 'method of
indivisibles' by Kepler's attempts at integration. He was not rigorous in his approach and it is
hard to see clearly how he thought about his method. It appears that Cavalieri thought of an area
as being made up of components which were lines and then summed his infinite number of
'indivisibles'. He showed, using these methods, that the integral of xn from 0 to a was an+1/(n + 1)
by showing the result for a number of values of n and inferring the general result.

Roberval considered problems of the same type but was much more rigorous
than Cavalieri. Roberval looked at the area between a curve and a line as being made up of an
infinite number of infinitely narrow rectangular strips. He applied this to the integral of xm from 0
to 1 which he showed had approximate value
(0m + 1m + 2m + ... + (n-1)m)/nm+1.

Roberval then asserted that this tended to 1/(m + 1) as n tends to infinity, so calculating the area.
Fermat was also more rigorous in his approach but gave no proofs. He generalised the parabola
and hyperbola.
Parabola: y/a = (x/b)2 to (y/a)n = (x/b)m

Hyperbola: y/a = b/x to (y/a)n = (b/x)m.
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In the course of examining y/a = (x/b)p, Fermat computed the sum of rp from r = 1 to r = n.
Fermat also investigated maxima and minima by considering when the tangent to the curve was
parallel to the x-axis. He wrote to Descartes giving the method essentially as used today, namely
finding maxima and minima by calculating when the derivative of the function was 0. In fact,
because of this work, Lagrange stated clearly that he considered Fermat to be the inventor of the
calculus.

Descartes produced an important method of determining normals in La Géométrie in 1637 based
on double intersection. De Beaune extended his methods and applied it to tangents where double
intersection translates into double roots. Hudde discovered a simpler method, known as Hudde's
Rule, which basically involves the derivative. Descartes' method and Hudde's Rule were
important in influencing Newton.

Huygens was critical of Cavalieri's proofs saying that what one needs is a proof which at least
convinces one that a rigorous proof could be constructed. Huygens was a major influence
on Leibniz and so played a considerable part in producing a more satisfactory approach to the
calculus.

Here is Barrow's differential triangle:

The next major step was provided by Torricelli and Barrow. Barrow gave a method of tangents to a curve
where the tangent is given as the limit of a chord as the points approach each other known as Barrow's
differential triangle.

Both Torricelli and Barrow considered the problem of motion with variable speed. The
derivative of the distance is velocity and the inverse operation takes one from the velocity to the
distance. Hence an awareness of the inverse of differentiation began to evolve naturally and the
idea that integral and derivative were inverses to each other were familiar to Barrow. In fact,
although Barrow never explicitly stated the fundamental theorem of the calculus, he was working
towards the result and Newton was to continue with this direction and state the Fundamental
Theorem of the Calculus explicitly.

Torricelli's work was continued in Italy by Mengoli and Angeli.

Newton wrote a tract on fluxions in October 1666. This was a work which was not published at
the time but seen by many mathematicians and had a major influence on the direction the
calculus was to take. Newton thought of a particle tracing out a curve with two moving lines
which were the coordinates. The horizontal velocity x' and the vertical velocity y' were the
fluxions of x and y associated with the flux of time. The fluents or flowing
quantities were x and y themselves. With this fluxion notation y'/x' was the tangent to f(x, y) = 0.



4

In his 1666 tract Newton discusses the converse problem, given the relationship
between x and y'/x' find y. Hence the slope of the tangent was given for each x and when y'/x'
= f(x) then Newton solves the problem by anti-differentiation. He also calculated areas by anti-
differentiation and this work contains the first clear statement of the Fundamental Theorem of
the Calculus.

Newton had problems publishing his mathematical work. Barrow was in some way to blame for
this since the publisher of Barrow's work had gone bankrupt and publishers were, after this, wary
of publishing mathematical works! Newton's work on Analysis with infinite series was written in
1669 and circulated in manuscript. It was not published until 1711. Similarly, his Method of
fluxions and infinite series was written in 1671 and published in English translation in 1736. The
Latin original was not published until much later.

In these two works Newton calculated the series expansion for sin x and cos x and the expansion
for what was actually the exponential function, although this function was not established
until Euler introduced the present notation ex.

Newton's next mathematical work was Tractatus de Quadratura Curvarum which he wrote in
1693 but it was not published until 1704 when he published it as an Appendix to his Optiks. This
work contains another approach which involves taking limits. Newton says
In the time in which x by flowing becomes x+o, the quantity xn becomes (x+o)n i.e. by the method
of infinite series,
xn + noxn-1 + (nn-n)/2 ooxn-2 + . . .

At the end he lets the increment o vanish by 'taking limits'.

Leibniz learnt much on a European tour which led him to meet Huygens in Paris in 1672. He
also met Hooke and Boyle in London in 1673 where he bought several mathematics books,
including Barrow's works. Leibniz was to have a lengthy correspondence with Barrow. On
returning to Paris Leibniz did some very fine work on the calculus, thinking of the foundations
very differently from Newton.

Newton considered variables changing with time. Leibniz thought of variables x, y as ranging
over sequences of infinitely close values. He introduced dx and dy as differences between
successive values of these sequences. Leibniz knew that dy/dx gives the tangent but he did not
use it as a defining property.

For Newton integration consisted of finding fluents for a given fluxion so the fact that integration
and differentiation were inverses was implied. Leibniz used integration as a sum, in a rather
similar way to Cavalieri. He was also happy to use 'infinitesimals' dx and dy
where Newton used x' andy' which were finite velocities. Of course
neither Leibniz nor Newton thought in terms of functions, however, but both always thought in
terms of graphs. For Newton the calculus was geometrical while Leibniz took it towards
analysis.
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Leibniz was very conscious that finding a good notation was of fundamental importance and
thought a lot about it. Newton, on the other hand, wrote more for himself and, as a consequence,
tended to use whatever notation he thought of on the day. Leibniz's notation of d and ∫ 
highlighted the operator aspect which proved important in later developments. By
1675 Leibniz had settled on the notation
∫ y dy = y2/2

written exactly as it would be today. His results on the integral calculus were published in 1684
and 1686 under the name 'calculus summatorius', the name integral calculus was suggested
by Jacob Bernoulli in 1690.

After Newton and Leibniz the development of the calculus was continued by Jacob
Bernoulli and Johann Bernoulli. However when Berkeley published his Analyst in 1734
attacking the lack of rigour in the calculus and disputing the logic on which it was based much
effort was made to tighten the reasoning. Maclaurin attempted to put the calculus on a rigorous
geometrical basis but the really satisfactory basis for the calculus had to wait for the work
of Cauchy in the 19th Century.

Sets, Arrays, and Functions in Calculus

A set is a collection of distinct objects, considered as an object in its own right. For example, the
numbers 2, 4, and 6 are distinct objects when considered separately, but when they are
considered collectively, they form a single set of size three, written {2,4,6}. Sets are one of the
most fundamental concepts in calculus and mathematical logic.

A set, N= {5 7 9 14}, all distinct objects

An arrays or lists,
x= {7 9 5 5}, y= {-2 5 7 5}

MATLAB Note:

MATLABE is an Interactive Development Environment (IDE) for problem solving,
programming, and visualization of data. In its simplest operational form, MATLAB system
prompts, the user, with ">>", for specifying an operation to be performed. MATLAB responds
by displaying a result. Immediate display of this result can be suppressed by placing a ";" at the
end of user specified operation. The lines without ">>", and prefixed with "ans" for the answers
produced by MATLAB if the output is not named by the user. Shown below is not an
introduction to MATLAB but simply a demonstration of how MATLAB handles basic
operations in Calculus.

In MATLAB:
>> x=[7 9 5 5];
>> x(3)
ans = 5
>> maxx=max(x)
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maxx = 9
>> y= [-2 5 7 5];
>> miny=min(y)
miny = -2
>> p=x+y
p = 5 14 12 10
>> q=x-y
q = 9 4 -2 0
A range
r=10:5:40;
r = 10 15 20 25 30 35 40

Functions

The mathematical concept of a function (and the name) emerged in the 17th century in
connection with the development of the calculus; for example, the slope dy/dx of a graph at a
point was regarded as a function of the x-coordinate of the point. Functions were not explicitly
considered in antiquity, but some precursors of the concept can perhaps be seen in the work of
medieval philosophers and mathematicians such as Oresme.

Mathematicians of the 18th century typically regarded a function as being defined by an analytic
expression. In the 19th century, the demands of the rigorous development of analysis
by Weierstrass and others, the reformulation of geometry in terms of analysis, and the invention
of set theory by Cantor, eventually led to the much more general modern concept of a function as
a single-valued mapping from one set to another.

Consider two sets X and Y and a correspondence which assigns to each element x in X exactly
one element y=f(x) in Y. The set of ordered pairs (x,y) generated by this correspondence is
called a function, x is called the argument of the function, and y=f(x) is called the value of the
function at x. the set X is called the domain of f and the set of values of f is called the range.

Alternatively, a function may be defined as a relation between a set of inputs and a set of
permissible outputs with the property that each input is related to exactly one output. An example
is the function that relates each real number x to its square x2. The output of a
function f corresponding to an input x is denoted by f(x) (read "f of x"). In this example, if the
input is −3, then the output is 9, and we may write f(−3) = 9. Likewise, if the input is 3, then the 
output is also 9, and we may write f(3) = 9. The same output may be produced by more than one
input, but each input gives only one output. The input variable(s) are sometimes referred to as the
argument(s) of the function.

In modern mathematics, a function is defined by its set of inputs, called the domain; a set
containing the set of outputs, and possibly additional elements, as members, called its c-domain;
and the set of all input-output pairs, called its graph. Sometimes the co-domain is called the
function's "range", but more commonly the word "range" is used to mean, instead, specifically
the set of outputs (this is also called the image of the function). For example, we could define a
function using the rule f(x) = x2 by saying that the domain and co-domain are the real numbers,
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and that the graph consists of all pairs of real numbers (x, x2). The image of this function is the
set of non-negative real numbers.

Functions are not simply mathematical constructs. Functions can be seen, heard, and felt
all around us. All we need to do is to keep our eyes open, our ears alert, and our minds
engaged for a meaningful life.

Example 1
G33: Express the radius r of a cylinder of constant volume v=1, as a function of its height h,
analytically and graphically.

S33: The volume V of a cylinder is given by the formula, V=πr2h which is given as 1.
Therefore, 1= πr2h. The analytic of the desired function is:
r=1/√π√h 

In MATLAB: [Note the construct syms stands for a symbolic expression in MATLAB in order
to define functions in a symbolic or analytic form]

syms h
>> r(h)=1/(pi^.5*h^.5);
>> h=1:1:6;
>> rh=r(h);
>> display(double(rh))
ans = 0.5642 0.3989 0.3257 0.2821 0.2523 0.2303
>> plot(h,r(h))
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Example 2
A car is at it its standstill position. It starts with a constant acceleration rate of 10 km/sec2.
Display acceleration, speed of the car, and distance covered at 10 seconds.

Acceleration a=10
Velocity or speed, v(t)=∫a(t)dt 
Distance, s(t)=∫v(t)dt 

In MATLAB
a=10
>> a=10;
>> syms t
>> v(t)=10*t;
>> s(t)=int(v)
s(t) = 5*t^2
[Note if t is a symbolic expression as defined above then its value is indicated as 't'.]
>> v10=v('10')
v10 = 100
>> s10=s('10')
s10 = 500
>> t=1:1:10
t = 1 2 3 4 5 6 7 8 9 10
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>> plot(t,v(t))
>> plot(t,s(t))

Speed of Car Distance Travelled
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