Machine Learning
Artificial Neural Networks

Deep Learning

In classical problem solving, you would write the code for solving a problem and run the
program with relevant datain order to produce desired results as shown in Figure 1.
Figure 1. Classical Approach to Problem Solving

Rules
_
Classical Results
Data Programming |———»
—_—

In problem solving through machine learning, selected data and expected results are provided as
input to the learning neural network which goes through alearning process by using the inputs.
The learning produces rules for solving the problem. The trained network then becomes the

problem solver for new data of the same type as the data used in training as shown in Figure 2.

Figure 2: Machine Learning Approach to Discovering Solutions to Problems

Data
—_—
Machine Rules
Results Learning EE—
 —

In deep learning, the neural network model learns to perform classification tasks directly from

images, text, or sound. Theterm “deep” refers to the number of layers in the network—the more

layers, the deeper the network. Traditional neural networks contain only 2 or 3 layers, while deep
networks can have hundreds.

Deep learning is a subtype of machine learning. With machine learning, you manually extract the
relevant features of an image. With deep learning, you feed the raw images directly into a deep
neural network that learns the features automatically.

Some examples of deep learning situation are:

Identify faces (or more generally image categorization)

Read handwritten digits and texts

Recognize speech (no more transcribing interviews yourself)
Trandate languages

Play computer games

Control self-driving cars (and other types of robots)

ourwdE

Deep learning is proving very useful in applications such as face recognition, text translation,
voice recognition, and advanced driver assistance systems, including lane classification and
traffic sign recognition.

A deep learning neura network consists of an input layer, several hidden layers, and an output
layer. The layers are interconnected via nodes, or neurons, with each hidden layer using the
output of the previous layer asitsinput.

Deep learning takes place by exposing the network to severa different categories of labeled
objects such as pictures. Once trained, we can present to the network as input a new picture.

The network then uses its experience with the objects that it was exposed to in training to
identify this new picture.

Let’s say we have a set of images where each image contains one of four different categories of
object, and we want the deep |earning network to automatically recognize which object isin each
image. We label the images in order to have training data for the network.

Deep learning often requires hundreds of thousands or millions of images for the best results. It's
also computationally intensive and requires a high-performance graphical processing unit (GPU)
in order to effectively process these large numbers within areasonable time. Desktop computers
with only CPU can be used to build deep learning networks of less complexity. Of course, such
computers can be used with a pre-trained network.

An example of apowerful pre-trained network is AlexNet. It is a convolutional neural network

(CNN), designed by University of Toronto scientist Alex Krizhevsky in collaboration Ilya

Sutskever under the guidance Professor Geoffrey Hinton, a cognitive psychologist and computer
scientist, most noted for his work on artificial neural networks.

AlexNet is 8 layers deep. The pretrained network can classify images into 1000 object
categories, such as keyboard, mouse, pencil, and many animals. It can be accessed through the
Internet. Another example of a pre-trained network is GoogL eNet. It is a convolutional neural
network that is 22 layers deep.

A convolution is simply application of afilter to an input that resultsin an activation. Repeated
application of the same filter to an input results in amap of activations called a feature map,
indicating the locations and strength of a detected feature in an input, such as an image.
Theinnovation in convolutional neural networksisthe ability to automatically run alarge
number of filtersin parallel specific to atraining dataset under the constraints of a specific
predictive modeling problem, such asimage classification. The result is highly specific features
that can be detected anywhere on input images.

Thefollowing is a simple demonstration of access and operation AlexNet usng MATLAB, an
environment without requiring GPU on user desktop computer.

The code used is simple and almost self-explanatory (text following a % is a comment for benefit

of the user and need not be type in running code statement.

Step 1: Clear the camera and identify it as the webcam to be accessed by AlexNet

clear camera; % Clear the camerafrom any pre-existing images
camera = webcam; % Connect to the camera

Step 2: Access AlexNet operating environment

nnet = aexnet; % Access AlexNet

Step 3: Take s picture of the object in front of webcam

picture = camera.snapshot ; % Take a picture

Step 4: Define the image size, and AlexNet assign alabel to what found

% Resize the picture, 227* 227=51529 picture e ements, each with brightness between 0 and 255
% Brightness value of 0 is black color, brightness of 255 iswhite color (maximum color value)
picture = imresize(picture,[227,227]);

label = classify(nnet, picture); % Classify the picture

Step5: Display the picture title as determined by AlexNet

image(picture); % Show the picture
title(char(label)); % Show the |abel

Get ready for a snapshot from you webcam before the snapshot command. Just for fun, |
executed this step while sitting in a high back leather chair with some clutter behind it. After
executing step 5 commands, AlexNet identified the picture as barber shop. Close but not quite
there.

Next time for the same steps, | alowed the webcam to take picture of afancy mug which aso be

used as flower pot. Hereishow AlextNet classified it.

| would say that AlexNet is quite agood recognizer of objects. | thought, | should stop fooling

around, | alowed AlexNet to take a picture of abonafide coffee mug. Hereis how it classified it.

Looks like a coffee pot. AlexNet got rightfully confused because | had placed the coffee mug on
areflecting surface making it look like a coffee pot.

Next time, | will place the object on a non-reflecting surface just be niceto AlexNet.

The point to note is that a picture consists of picture elements. Each element is called apixel.
These are small little dots that make up the image. We need to make sure that the elements that
really represent what we are trying to recognize are identified and not the noise, the elements that
are distracting us from the object of our attention. Filtering functions are applied to reduce the
effect of noise.

The following example shows how to create and train a simple convolutional neural network
(convnet/CNN) for classification using deep learning. The term convolute means to fold, roll or
twist together. In convnet each layer of neurons affects the adjacent layer of neurons. Convnet
uses alearning agorithm particularly suited to image processing. Rather than working with global
features of an image, it breaks the image into local features. After learning a pattern in one
location, it can recognize it anywhere. This makes processing of data more efficient. Convnets
can take an input image, assign importance (learnable weights and biases) to various
aspects/objects in the image and be able to differentiate one from the other. Convnets require
fewer training samples to learn representations that have generalization power. The amount of
pre-processing required in a convnet is much lower as compared to other classification

algorithms. Convnet can learn spatia hierarchiesin the patternsit recognizes. The first

convolution layer learns small local patterns such as edges, the second layer recognizes larger
patterns made of the features of thefirst layer, and so on. It allows convnets to learn increasingly
complex and abstract visua concepts.

The inspiration for convnets appears to have come from the structure of the human visual cortex
and connectivity patterns of neurons in the human brain.

A convolution is the application of afilter to an input that resultsin an activation. Repeated
application of the same filter to an input results in a map of activations called a feature map,
indicating the locations and strength of a detected feature in an input, such as an image.
Convolutional neural networks are essential tools for deep learning, and are especially suited for
image recognition.

Building Blocks of Deep Learning Networks

1. Drawing abatch of training samples X and corresponding targets (expected outputs) y
Y ou develop an appropriate representation of input data. For example, if we have 10,000
images of digitsfrom 0 to 9, called labels, we may code each image as a (28,28) array of
pixels, each pixel having an eight-bit integer values between 0 and 255 indicating it
brightness. The basic data structure (data container) used in machine learning is called a
tensor. A tensor isamultidimensional array. The dimensions may vary from O for ascaar
to an appropriate number for network layers, referred to as the tensor rank. The dimensions
are called axes, on the lines of conventional thinking of axesin arrays. A matrix of rows and
columnsisa2D tensor. Packing 2D tensorsin an array leadsto a 3D tensor and so on. Each
tensor has three attributes rank, shape and datatype. For example, 10,000 samples of input
digits as arrays of 28-by-28 integer datatype, we denote the tensor shape as (10000, 28, 28).
The product of 28-by-28 is 784. Theinput is converted into a representation as (10000, 784)
and assigning valuesto each point in theimage. The datavalue of each point is transformed
into fractions of 32-bit floating point datatype. Thisisachieved by dividing the integer
values of 0 to 255 in the 28-by-28 array with the maximum of 255, resulting in gloating point
values between 0 and 1 for network processing. This form of representation happens at the
network input layer.

2. Inforward pass (propagation) through the network, you feed the network tensor of inputs X,
and targetsy to obtain y_pred, the values predicted by the network for specified targets. The

6

output of each neuron can be expressed as, output=relu(dot (W, input) + b) where W, input,
and b are the tensors for weights, input data (X, y), and bias respectively. Generally, the
initial values of weights are chosen randomly and the biasis set at zero. These parameters get
adjusted automatically for subsequent forward passes on the basis of results from the back
propagation through the network. Here relu, rectified linear unit, is an activation function that
is applied to sum of tensor product of inputs and associated weights plus the bias vector. We
can define relu function operation as relu(x)=max(x,0) i.e. the actual calculated output is X if
X is greater than zero, otherwise the output is simply zero. This computational operation
occurs at every node, and in some cases at selected nodes. A nodeis simply a computational
module. Therefore, operations at al nodes of alayer in forward pass can be performed in
paralel. In large networks, parallel processing becomes a necessity.

. The network applies aloss function to determine the mismatch betweeny and y_pred. The
goal isto minimizeit. The loss function is one of the important components of neura
networks. Loss is nothing but a prediction error of neural net. The method to calculate the loss
iscalled aloss function. In simple words, the loss is used to cal cul ate the gradients, the rates
of change and the amounts of change during aforward pass. Instead of just using the gradient
of the current step to guide the forward pass, momentum also accumulates the gradient of the
past steps to determine the direction to go. The gradients are used to update the parameters of
the neural net. Thisis how aneura net is trained.

. Performing a backward pass (propagation), cal cul ating the amount and the rate of change
(gradient) for al hidden network layers. Backpropagation algorithm is probably the most
fundamenta building block in aneural network. The algorithm is used to effectively train
a neural network through a method called chain rule. In simple terms, after each
forward pass through a network, backpropagation performs a backward pass while
adjusting the network model’s parameters (weights and biases).

. Making changes in node parameters can be performed simultaneoudy at all nodes of all
layers, making massive parallel processing anecessity. Parameters are modified for reducing
the loss, making W=W-stepsize* gradient. This process is known as the stochastic gradient
descent with momentum (SGDM) optimization, and the algorithm used is called an
optimizer. Gradient, in plain terms means slope or dant of a surface. So gradient descent

literally means descending a slope to reach the lowest point on that surface. The network has

gone through alearning experience that can be applied to successive steps. The amount by
which the weights are updated during training is referred to as the step size or the “learning
rate.” Specifically, the learning rate is a configurable hyperparameter used in the training

of neural networks that has a small positive value, often in the range between 0.0 and 1.0.
Step size of the algorithm plays acritical role. It determines the subset of the local optima
that the algorithm can converge to, and it specifies the magnitude of the oscillationsif the
algorithm converges to an orbit. Thereis relationship between the step size of the agorithm
and what is obtained as a solution.

The output of the last hidden layer becomes the input of the output layer. If we haveten
classesto identify asin the case of ten numerical digits then the output layer contains 10
units. The output is shaped through 10-way softmax layer. It returns an array of ten
probability scores (with a sum of 1). Each score will be the probability that the current digit
image presented belongs to one-of-ten-digit classes, 0, 1, 2...9. Softmax is an activation
function, like relu and sigmoid. The term softmax is used because this activation function
represents a smooth version of the winner-takes-all activation model in which the unit with

the largest input has output value of 1 while al other units have output value of O.

Example: Simple Deep L ear ning Classification Examplein MATLAB

Broadly speaking, the operational steps are:

oukrwbdprE

Load and explore image data.

Define the network architecture.

Specify training options.

Train the network.

Predict the labels of new data and calculate the classification accuracy.
Load and Explore Image Data

MATLAB programming environment is being used in this example, rather than Python, because

it allows to build deep learning networks without the need to have a high-power graphical

processing unit (GPU) in your computer. These GPUs are expensive. Examplesare Titan X and

GTX 1080 Ti. Asan aternative, one could use Google Cloud instances or Amazon Web

Services (AWS). However, they involve usage-based associated costs.

The goal hereis to understand the structure and operations of deep learning networks and not

necessarily to focus on the coding required for it.

Step 1: Load the following image as input data

El &

Each digit isapicture of 28x28 pixels. So, in total each image of adigit has 28* 28=784 pixels.
Each pixe takes avalue between 0 and 255 (based on RGB code). Each image consists of an
array of 784 numbers as inputs to the network.

Coding is shown in boxes and comments or explanations appear before/after each box.

digitDatasetPath = fullfile(matlabroot, toolbox','nnet’,'nndemos, ...
'nndatasets,'DigitDataset’);
imds = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders, true,'Label Source,'foldernames);
figure;
perm = randperm(10000,20);
fori=1:20
subplot(4,5,i);
imshow(imds.Files{ perm(i)});
end

Datais labeled automatically and stored. This image datastore enables you to store large amounts
of data, including data that does not fit in memory, and read batches of images efficiently during

training of a convolutiona neural network.

Step 2: Calculate the number of images in each category

label Count = countEachL abel (imds)

The output is label count.
label Count = 10x2 table

Label Count

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

OCoOoO~NO UG~ WNPEFO

Label count isatable that contains the label names and the number of images for each label. The
datastore contains 1000 images for each of the digits 0-9, for atotal of 10000 images. Y ou can
specify the number of classesin the last fully connected layer of your network as

the OutputSize argument.

Step 3: Specify theimage size

img = readimage(imds,1);
size(img)

img = readimage(imds,1);
>> 5ze(img)

The output is:

10

ans=
28 28
ans= 1x2
28 28

Each image is 28-by-28-by-1 array of pixels. Therefore, there are 28* 28=784 pixels with
grayscal e brightness values from 0 to 255 for images labeled from 0 to 9. The computer can’t
really “see’ adigit like we humans do, but if we dissect the image into an array of 784 numbers
with values like [0, 0, 180, 16, 230, ..., 4, 77, 0, 0, 0], then we can feed this array into our neura
network. The computer can’t understand an image by “seeing” it, but it can understand and
analyze the pixel values that represent an image.

Figure 3: Visualization of inputs, hidden, and output layers

Let the set of inputs X be designated as X1, X2, X3......Xm. These are known as m features. A
featureisjust avariable that hasinfluence to a specific outcome. These features are multiplied by
their corresponding set W of weightswi, Wo, Ws, ,» Wm and then summed into what is

known as dot product, described as:

m
W X =wz +weza+ ... + W&y = D, Wil

11

Added to itisabiasvalue bi. There are usually 2 or more hidden layersin adeep learning
network. At each hidden layer of n number of neurons, the inputs are multiplied by the
corresponding weights and summed. There are n such summations called dot products.
Subsequently, this summed value plus the corresponding bias, b, is operated upon by an
activation function to create the desired effect of activating or not activating a neuron in
following hidden layer of neurons.

Step 4: Specify the training data sets

label. splitEachL abel splits the datastore digitData into two new

datastores, trainDigitData and val DigitData.

numTrainFiles = 750;

[imdsTrain,imdsValidation] = splitEachL abel (imds,numTrainFiles,'randomize);

Divide the datainto training and validation data sets, so that each category in the training set

contains 750 images, and the validation set contains the remaining images from each
Step 5: Define the convnet architecture

layers=|
imagel nputLayer([28 28 1])
convolution2dL ayer(3,8,'Padding’,'same’)
batchNormalizationL ayer
reluLayer
maxPooling2dL ayer(2,'Stride',2)

convolution2dL ayer(3,16,'Padding’,'same’)
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,'Stride',2)

convolution2dL ayer(3,32,'Padding’,'same’)
batchNormalizationLayer
reluLayer

fullyConnectedL ayer(10)
softmaxL ayer
classificationLayer];

12

Image Input Layer iswhere you specify the image size, which, in this case, is 28-by-28-by-1.
These numbers correspond to the height, width, and the channel size. The digit data consists of
grayscale images, so the channel size (color channel) is 1. For acolor image, the channel sizeis
3, corresponding to the RGB values. Y ou do not need to shuffle the data because trainNetwork,
by default, shuffles the data at the beginning of training. trainNetwork can also automatically
shuffle the data at the beginning of every epoch during training.

Convolutiona Layer’sfirst argument isfilterSize, which isthe height and width of the filters the
training function uses while scanning along the images. In this example, the number 3 indicates
that the filter sizeis 3-by-3. Y ou can specify different sizes for the height and width of thefilter.
The second argument is the number of filters, numFilters, which is the number of neurons that
connect to the same region of the input. This parameter determines the number of feature maps.
Use the 'Padding’ name-value pair to add padding to the input feature map. For a convolutional
layer with a default stride of 1, 'same’ padding ensures that the spatial output sizeis the same as
the input size. Y ou can aso define the stride and learning rates for this layer using name-value

pair arguments of convolution2dlL ayer.

Batch Normalization Layer Batch normalization layers normalize the activations and gradients
propagating through a network, making network training an easier optimization problem. Use
batch normalization layers between convolutional layers and nonlinearities, such as ReL U layers,

to speed up network training and reduce the sensitivity to network initialization.

use batchNormalizationL ayer to create a batch normalization layer.
The batch normalization layer is followed by a nonlinear activation function. The most common
activation function is the rectified linear unit (ReLU). Userelu to create aRelL U layer.

Figure 4: Neuron Input to Output Activation Functions

13

RelL U isapiecewise linear function that will output the input directly if it is positive, otherwise,
it will output zero. The rectified linear activation function overcomes the vanishing gradient
problem, allowing modelsto learn faster and perform better.

Max Pooling Layer Convolutional layers (with activation functions) are sometimes followed by a
down-sampling operation that reduces the spatial size of the feature map and removes redundant
spatia information. Down-sampling makes it possible to increase the number of filtersin deeper
convolutiona layers without increasing the required amount of computation per layer. One way

of down-sampling is using a max pooling, which you create using maxPooling2dL ayer. The max

pooling layer returns the maximum values of rectangular regions of inputs, specified by the first
argument, pool Size. In this example, the size of the rectangular region is[2,2]. The 'Stride' name-
value pair argument specifies the step size that the training function takes as it scans along the
input.

Fully Connected Layer The convolutional and down-sampling layers are followed by one or
more fully connected layers. Asits name suggests, a fully connected layer isalayer in which the
neurons connect to all the neuronsin the preceding layer. Thislayer combines all the features
learned by the previous layers across the image to identify the larger patterns. The last fully
connected layer combines the features to classify the images. Therefore,

the OutputSize parameter in the last fully connected layer is equa to the number of classesin the
target data. In this example, the output size is 10, corresponding to the 10 classes.

Use fullyConnectedL ayer to create afully connected layer.

Softmax Layer The softmax activation function normalizes the output of the fully connected
layer. The output of the softmax layer consists of positive numbers that sum to one, which can
then be used as classification probabilities by the classification layer. Create a softmax layer
using the softmaxL ayer function after the last fully connected layer.

Classification Layer The final layer isthe classification layer. Thislayer uses the probabilities
returned by the softmax activation function for each input to assign the input to one of the
mutually exclusive classes and compute the loss. To create a classification layer,

use classificationLayer.

Step 6: Specify Training Options

| options = trainingOptions('sgdm’, ...

14

‘Initial LearnRate’,0.01, ...
'‘MaxEpochs 4, ...
‘Shuffle','every-epoch, ...
‘ValidationData,imdsValidation, ...
‘ValidationFrequency',30, ...
‘Verbose' false, ...
'Plots,'training-progress);

After defining the network structure, specify the training options. Train the network using
stochastic gradient descent with momentum (SGDM) with an initial step size (learning rate) of
0.01. Set the maximum number of epochsto 4. An epoch isafull training cycle on the entire
training data set. Monitor the network accuracy during training by specifying validation data and
validation frequency. Shuffle the data every epoch. The software trains the network on the
training data and cal cul ates the accuracy on the validation data at regular intervals during
training. The validation datais not used to update the network weights. Turn on the training
progress plot, and turn off the command window output.

Step 7: Train network using training data

net = trainNetwork(imdsTrain,layers,options);

Train the network using the architecture defined by layers, the training data, and the training
options.

The resulting output is:

15

The picture is avideo showing the accuracy of output as the network goes though the learning
epochs until the loss function value is reduced to near zero. An epoch isafull passthrough the
entire data set.

By default, trainNetwork usesa GPU if oneis available (requires Parallel Computing Toolbox™
and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise, it uses a CPU.
Y ou can also specify the execution environment by using the 'ExecutionEnvironment’ name-
value pair argument of trainingOptions.

Thetraining progress plot shows the mini-batch loss and accuracy and the validation loss and
accuracy.

When you train a network for deep learning, it is often useful to monitor the training progress.
By plotting various metrics during training, you can learn how the training is progressing. For
example, you can determineif and how quickly the network accuracy isimproving, and whether
the network is starting to overfit the training data.

When you specify ‘training-progress’ asthe ‘Plots' valuein trainingOptions and start network
training, trainNetwork creates a figure and displays training metrics at every iteration. Each
iteration is an estimation of the gradient and an update of the network parameters. If you specify
validation datain trainingOptions, then the figure shows validation metrics each

time trainNetwork validates the network. The figure plots the following:

16

e Traning accuracy — Classification accuracy on each individual mini-batch.

e Smoothed training accuracy — Smoothed training accuracy, obtained by applying a
smoothing algorithm to the training accuracy. It is less noisy than the unsmoothed
accuracy, making it easier to spot trends.

o Validation accuracy — Classification accuracy on the entire validation set (specified
using trainingOptions).

e Training loss, smoothed training loss, and validation loss — The loss on each mini-batch,
its smoothed version, and the loss on the validation set, respectively. If the final layer of
your network is a classificationLayer, then the loss function is the cross-entropy loss. For
regression networks, the figure plots the root mean sgquare error (RM SE) instead of the
accuracy.

During the training, you can stop the training and return the current state of the network by
clicking the stop button in the top-right corner. For example, you might want to stop training
when the accuracy of the network reaches a plateau and it is clear that the accuracy is no longer
improving. After you click the stop button, it can take awhile for the training to complete. Once
training is complete, trainNetwork returns the trained network.

When training finishes, view the results showing the final validation accuracy and the reason that
training finished. The final validation metrics are labeled final in the plots. If your network
contains batch normalization layers, then the final validation metrics are often different from the
validation metrics evaluated during training. Thisis because batch normalization layersin the
final network perform different operations than during training.

Thelossisthe cross-entropy loss. The accuracy is the percentage of images that the network
classifies correctly.

Step 8: Classify validation images and compute accuracy

Predict the labels of the validation data using the trained network, and cal culate the final
validation accuracy. Accuracy is the fraction of labels that the network predicts correctly. In this
case, more than 99% of the predicted labels match the true labels of the validation set.

Y Pred = classify(net,imdsValidation);
YValidation = imdsValidation.Labdls;
accuracy = sum(Y Pred == Y Vadidation)/numel (Y Validation)

17

The output is:
accuracy = 0.9988

Sources:

https://towardsdatasci ence.com/multi-layer-neural -networks-with-sigmoid-functi on-deep-
|earning-for-rookies-2-bf 464f09eb7f

https://towardsdatasci ence.com/a-comprehensi ve-guide-to-convol utional -neural -networks-the-
eli5-way-3bd2b1164a53

Chollet, Francois, Deep Learning with Python, Manning, NY, 2018.

https://machinel earningmastery.com/convol utional -layers-for-deep-learning-neural -networks

18

