I ntroduction to Machine L ear ning

Machine learning is aimed at discovering patternsin data. It gives computersthe ability tolearn
without being explicitly programmed. It involves using statistical methods to create programs that
either improve performance over time, or detect patterns in massive amounts of data that humans
would be unlikely to find. Machine Learning exploresthe gudy and construction of dgorithmsthat can
learn from and make predictions on data. Such agorithms operate by building amode from exampleinputs
in order to make datadriven predictions or decisons, rather than following Strictly Satic program
ingructions. In short, we may say that Machine Learning isa collection of dgorithms and techniques used
to creste computationa systemsthat learn from datain order to make predictionsand inferences.
Machine learning isasubset of Artificid Intelligence (Al).

Data used in anayssisabout real-world phenomenon. For example, daily stock prices, earnings,
and reviews are some of the indicators of stock market. This data could somehow provide the
means for understanding the stock market and serve to make some predictions. Each piece of
data describes an observation. The collection of these observations can assist usin serving some
desired goa within acontext, in this case that of the stock market. How do we process the data
to find the answers we may be seeking? We use models of reality involving masses of data, look
for relationships among the attributes that represent data and perform processing operations
based on those relationships.

A partia classification of techniques used in machine learning are shown in Figure 1.

Figure 1. Machine Learning Techniques Classification

1. Machine Learning
1.1 Supervised Learning
1.1.1 Classification
1.1.1.1 Image Classification
1.1.1.2 Machine Translation
1.1.2 Regression
1.1.2.1 Stock Prediction
1.1.2.2 Image Masking
1.2 Unsupervised Learning
1.2.1 Machine Learning
1.2.1.1 Dimension Reduction
1.2.1.2 Clustering
1.2.2 Deep Learning
1.2.2.1 Representation Learning

‘ ‘ ‘ | 1.2.2.2 Generative Models | | ‘ ‘

Supervised learning is the machine learning task of learning a function that maps an input to an
output based on example input-output pairs. It infers afunction from labeled training data
consisting of a set of training examples.

In supervised machine learning, labeled data set is used as the basis for predicting through the
use of machine learning algorithms. Two of the common methods are classification and
regression.

In the category of supervised learning, classification techniques focus on predicting a qualitative
response by analyzing data and recognizing patterns. For example, this type of technique is used
to classify whether or not a credit card transaction is fraudulent. Regression techniques begins
with a choice of a plausible mathematical model that islikely to the given data. Appropriate
learning agorithms are then used to try out and find a solution that best fits the model.

In unsupervised machine learning, the users do not need to supervise the model. The model
works on its own to discover previoudy undetected patterns and information. Algorithms almost
always require structured data, while deep learning networks rely on layers of artificial neural
networks (ANN). If the outcome from machine learning produces an incorrect result, the
algorithms go through alearning process. In deep learning, the mistakes are corrected through
an automated process.

Thefollowing is atypical sequence of activities on data:

1. Taketheraw dataand identify the attributes inherently associated the data, making it
information.

Take the information and explore the possibilities

Extract meaningful features relevant to problem solution and outcomes

Construct and try model based on perceived pattern in data.

Modify the model parameters or change to other models improved solutions

agrLOD

Some other examples of situations for machine learning are weather forecasting, email spam
identification, fraud detection, probability of customer purchasing a product or renewal of
insurance policy, predicting the chances of a person with aknown illness, etc.

All situations can be described in terms data which may consist of text, categories or numerical
values. Datais about objects in the world such as a person, customers, buyers, sellers, products,

and any other situation of interest to us.

Observed datain a popul ation may be expressed in terms of nominal, ordinal, interval, ration

scales, etc.

The following are some examples.

Scale Type Object Example Attribute Name Example of Measurement
Nominal Flower Color Red, Yelow, Purple,
Person Gender Orange
Age Male, Female, other
Infant, Child, Teen, Adult,
Residence Elderly
Telephone Brand Suburb, City, Town
Apple, Samsung, LG
Ordina Person Academic Rank Professor, Lecturer
Clothing Size Small, Medium, large
Grade A,B,C
Service Satisfaction Satisfied, Not satisfied,
Neutral
Interval Person Incomein Below 50, 50-100, over
thousands 100
1Q 80-100, 100-120, 120-140
Ratio Person Height (ft) 5, 6, 7, etc.
(values cab Age 1,2, 3, etc.
compared as double, Weight (Ibs) 10, 20, 30, etc.
half, etc.

In these notes, we will explore approaches to machine learning, with examples of problems and

solutions using data analysis and dataintelligence. Solutions are implemented in Python

programming language. Python has been chosen because it a general-purpose programming

language. It isopen source meaning that it is available free of charge and allows access to

programs and tool s devel oped by other worldwide.

Anaconda Python Distribution is a good choice to download and install Python. It comes

bundled with almost everything that you would need to start your data science journey. In

addition to the core Python language, it includes many useful packages such as Numpy,

Matplotlib, SciPy, Statsmodels, Pandas, Sklearn, and many more. Anaconda comes with an

Integrated Development and Learning Environment (IDLE) with a built-in console for creating

files of programs, running program in parts or completely, and provides a help facility.

Data values on such things as gender, marital status can be expressed in categories such as male,

female for gender, and marita status as married, unmarried. For ease of processing in machine

learning they can be expressed as numerical such 1 for male, 2 for female, and likewise 1

married and O unmarried.

Consider the following artificialy constructed trivial data example of using Pandas package.

import pandas as pd
df= pd.DataFrame({"'A":['low','medium’,'high’], 'B":[10,20,30]}, index=[0,1,2])
print(df)

Data displayed by print statement is:

A B
0 low 10
1 medium 20
2 high 30

The data can factorized by assigning numeric values to categories of low, medium, and high as
0,1, 2.

df['A_pd_factorized] = pd.factorize(df[AT)[0]

print (df)
A B A_pd factorized
0 low 10 0
1 medium 20 1
2 high 30 2

Thefactorization may be chosed as 10, 20, and 30 instead of O, 1, and 2
Ex:

We can dso convert textual datavaluesto numbersby using the ‘Labe Encoder’ function of Scikit-
learn. If the number of levelsishigh (example zip code, state, etc.), then you may apply businesslogic
to combine levelsinto groups. For example, a zip code or state can be combined to regions;, however, in
thismethod thereisarisk of losing critica information. We may combine categories based on smilar
frequency (new category can be high, medium, low). Following are some examples of achieving this
god.

It is often desirable to normalize datai.e. transforming attribute values to roughly the same
order of magnitude. Normalizing data can be achieved by Min-Max scaling, after removing the
extreme outliersin the given data as follows.

Xormalized=(X-Xmin)/ (X max-Xmin)

The data may be standardized by making the values to have a zero mean.

Thus, Z=(X-pn)/o where p is the mean and o is the standard deviation.

Generdly, in machine learning exercises alarge data set isused. Examples of such data sets can
be found through the Internet.

Example 1

In this example, the data set known as IRIS from the UCI Machine Laboratory Repository at

https://archive.ics.uci.edu/ml/datasets/iris. It is perhaps the best-known database to be found in
the pattern recognition literature. The data set contains 3 classes of 50 instances each, where each
classrefersto atype of iris plant. One classis linearly separable from the other 2; the latter are
NOT linearly separable from each other.

The data set attributes are:
1. sepal length incm

2. sepal widthincm

3. petal length in cm

4, petal widthincm

5. class:

-- Iris Setosa

-- IrisVersicolour

-- IrisVirginica

Machine learning goal isto predict the class of iris plant.
In the details that follow, coding for each distinct step will be enclosed in abox. Comments on

coding and the coding execution outcome will appear after the corresponding box.

Preparing the Environment for Coding

In these notes, coding statements are enclosed in abox for convenience. The coding
environment uses pre-built relevant code in the form of available packages commonly known as

Python libraries. These libraries provide standardized solutions for many problems that occur in

everyday programming. In Anaconda distribution of Python most of the libraries areincluded in
the distribution installation. Selected libraries then simply imported as needed.

Package bought in the environment for this example are:
numpy: Itisalibrary for array processing for numbers, strings, records, and objects.

sklearn (Scikit-learn) isalibrary for machine learning.

The import operations often assign a nickname for ease of usein coding. Here, the nickname

used for numpy is np. Thisisacommon practice.

from sklearn import datasets
import numpy as np

from sklearn import preprocessing
iris=datasets.|oad _iris()
x=iris.data[:,[2,3]]

y=iris.target

x isamatrix of two columns from irisdata. The associated |abels are petal length and

petal width. y isthe target array.

Petal Length and Petal width are selected as the control variables, x1 and x2. The target variable,
y, consists of an array of zeroes, followed by ones, further followed by twos corresponding to
categories of Iris Setosa, Iris Versicolour, and Iris Virginica.

We can display extracted datafromirisfor x and y, where x isamatrix of two columns of iris
datawith 150 rows and y is an array of the same size.

std_scale = preprocessing. StandardScal er().fit(x)
X_std = std_scale.transform(x)

X_std = std_scale.transform(x)

minmax_scale = preprocessing.MinMaxScal er().fit(x)
X_minmax = minmax_scale.transform(x)

print('Mean before standardization: petal length={:.1f}, petal width={:.1f}'
format(x[:,0].mean(), X[:,1].mean()))

print('STD before standardization: petal length={:.1f}, petal width={:.1f}" .format(x[:,0].std(),
X[:,1].std()))

print('Mean after standardization: petal length={:.1f}, petal width={:.1f}'
Sformat(x_std[:,0].mean(), x_std[:,1].mean()))

print('STD after standardization: petal length={:.1f}, petal width={:.1f}'
format(x_std[:,0].std(), x_std[:,1].std()))

Mean before standardization: petal |length=3.8, petal width=1.2
STD before standardization: petal length=1.8, petal width=0.8
Mean after standardization: petal length=-0.0, petal width=-0.0
STD after standardization: petal length=1.0, petal width=1.0

The above printed outputs have some statistics of variables petal length and petal width datain

iris before any standardization of the data.

print(\nMin value before min-max scaling: patel length={:.1f}, patel
width={:.1f} ".format(x[:,0].min(), X[:,1].min()))

print('Max vaue before min-max scaling: petal length={:.1f}, petal
width={:.1f} ".format(x[:,0].max(), X[:,1].max()))

print('"Min value after min-max scaling: patel length={:.1f}, patel
width={:.1f}".format(x_minmax[:,0].min(), x_minmax][:,1].min()))
print('Max vaue after min-max scaling: petal length={:.1f}, petal
width={:.1f}".format(x_minmax[:,0].max(), Xx_minmax|:,1].max()))

Min value before min-max scaling: patel length=1.0, patel width=0.1

Max value before min-max scaling: petal length=6.9, petal width=2.5

Min vaue after min-max scaling: patel length=0.0, patel width=0.0

Max value after min-max scaling: petal length=1.0, petal width=1.0

The sklearn.preprocessing package provides several common utility functions to change raw
feature vectors into a representation that is more suitable for the downstream estimators. In
general, learning a gorithms benefit from standardization of the data set. If some outliers are
present in the set, robust scalers or transformers are more appropriate. The behaviors of the
different scalers, transformers, and normalizers on a dataset containing marginal outliersis

highlighted in Compare the effect of different scalers on datawith outliers.

Feature Congtruction or Generation

Machine learning agorithms give best results only when we provideit the best possible festures that
gtructure the underlying form of the problem that you are trying to address. Often these festures have to
be manually created by spending alot of time with actual raw dataand trying to understand its
relationship with dl other data that you have collected to address abusiness problem.

It meansthinking about aggregeating, splitting, or combining featuresto create new festures, or
decomposing features. Often this part istalked about asan art form and isthe key differentiator in

competitive machine learning.

Feature congtruction ismanua, dow, and requires subject-matter expert intervention heavily in order to
creste rich features that can be exposed to predictive modding algorithmsto produce best reults.
Summarizing the datais afundamenta technique to help us understand the data qudity and issues/gaps.
Thefollowing maps commonly usetabular and graphica data summarization methods for different data

types.

Commonly Used Data Summarization Method

Discrete/Quditative Quantitative/Quantitative
Tabular Methods Graphica Methods Tabular Methods Graphicad Methods
e Fregquency e Ba Grgoh e Frequency e Lineplot
digtribution e PFeChat distribution e Dotplot
e Rdaivefrequency | e Othervisudizations | ¢ Reaivefrequency | e Histogram
digtribution digtribution e Scater diagram
o % Frequency e Cumulaive
digribution Frequency
e Crosstabulaion digribution
o Cumuldiverdative
frequency
digribution
e Crosstabuldion

Exploratory Data Analysis (EDA)

In EDA understanding about the avail able datais done by summarizing and visualizing techniques.
EDA dlows both univariate and multivariate analyss. Through the process of EDA, we can ask to
define the problem statement or definition on our data set which is very important.

Example 2

Large sets of data are available from a variety of sources. We will make use of some of them.
Consider, for example data on cars available from:

https://www.kaggle.com/CooperUnion/cardataset

We can import it for our work. This data contains more of 10, 000 rows and more than 10
columns which contains features of the car such as Engine Fuel Type, Engine HP, Transmission
Type, highway MPG, city MPG and many more. We will explore dataand make it ready to

model machine learning.

The environment is adding pandas, seaborn, and matpl otlib.

Seaborn is a statistical data visualization package, nicknamed sns.
Matplotlib provides publication quality figure, nicknamed plt.

import pandas as pd

import numpy as np

import seaborn as sns #visualisation
import matplotlib.pyplot as plt #visualisation
Y%matplotlib inline

sns.set(color_codes=True)

df = pd.read csv("data.csv")

%matplotlib inline sets the backend of matplotlib to the 'inline' backend. The output of plotting
commands is displayed inline within frontends. The resulting plots can aso be stored, copied and
pasted.

The data frame, df is the name assigned to dataloaded from the iris data worksheet. Some quick
of loaded datais shown

df.count()
print(df.describe())
print(df.shape)
Count:
Make 11914
Model 11914
Y ear 11914
EngineFuel Type 11911
Engine HP 11845

Engine Cylinders 11884
Transmission Type 11914
Driven_Wheels 11914
Number of Doors 11908
Market Category 8172

Vehicle Size 11914

Vehicle Style 11914

highway MPG 11914

city mpg 11914

Popularity 11914

MSRP 11914

dtype: int64

Description:

Y ear EngineHP ... Popularity MSRP

count 11914.000000 11845.00000 ... 11914.000000 1.191400e+04

mean 2010.384338 249.38607 ... 1554.911197 4.059474e+04

std 7.579740 109.19187 ... 1441.855347 6.010910e+04
min 1990.000000 55.00000 ... 2.000000 2.000000e+03
25% 2007.000000 170.00000 ... 549.000000 2.100000e+04
50% 2015.000000 227.00000 ... 1385.000000 2.999500e+04
75% 2016.000000 300.00000 ... 2009.000000 4.223125e+04
max 2017.000000 1001.00000 ... 5657.000000 2.065902e+06

[8 rows x 8 columns]

Shape:
(11914, 16)

The call df.head(5) provides apartial view, five rows, and all sixteen columns, athough not all
are displayed.

| print(df.head(5)) #print the top 5 rows

Make Modd Yea .. city mpg Popularity MSRP
0 BMW 1SeriesM 2011 ... 19 3916 46135
1 BMW 1Series 2011 .. 19 3916 40650
2 BMW 1Series 2011 .. 20 3916 36350
3 BMW 1Series 2011 .. 18 3916 29450
4 BMW 1Series 2011 .. 18 3916 34500

[5 rows x 16 columns]

The column labels in this database are:
Make

Model Y ear
Engine

Fuel Type

Engine HP

Engine Cylinders
Transmission Type
Driven_Wheels

. Number of Doors

10. Market Category

11. Vehicle Size

12. Vehicle Style

13. highway MPG city
14. mpg

15. Popularity

16. MSRP

CoNOOA~AWDNE

| print(df.tail (5))

Make Modd Year ... city mpg Popularity MSRP

11909 Acura ZDX 2012 ... 16 204 46120
11910 Acura ZDX 2012 ... 16 204 56670
11911 Acura ZDX 2012 ... 16 204 50620
11912 Acura ZDX 2013 ... 16 204 50920
11913 Lincoln Zephyr 2006 ... 17 61 28995

[5 rows x 16 columns]

| print(vars(df))

{'_is_copy": None, '_data: BlockManager
Items. Index(['Make, ‘Modd’, 'Y ear', 'Engine Fuel Type, 'Engine HP,
'‘Engine Cylinders, 'Transmission Type, 'Driven_Whesls,
‘Number of Doors, 'Market Category', 'Vehicle Size, 'Vehicle Style,
'highway MPG', ‘city mpg', 'Popularity’, 'MSRP1,
dtype="object’)
AXxis 1. Rangelndex(start=0, stop=11914, step=1)
FloatBlock: [4, 5, 8], 3 x 11914, dtype: float64
IntBlock: [2, 12, 13, 14, 15], 5 x 11914, dtype: int64
ObjectBlock: [0, 1, 3, 6, 7, 9, 10, 11], 8 x 11914, dtype: object, '_item_cache": {},"_attrs: {}}

Selecting Attributes of Interest by Deleting Unwanted Columnsfor an EDA Session

df = df.drop(['Engine Fuel Type, 'Market Category', 'Vehicle Styl€, 'Popularity’, '"Number of
Doors, 'Vehicle Size], axis=1)
df.head(5)

Make Model Year ... highway MPG city mpg MSRP
0 BMW 1 SeriesM 2011 ... 26 19 46135

1 BMW 1Series 2011 .. 28 19 40650

2 BMW 1 Series 2011 ... 28 20 36350

3 BMW 1 Series 2011 ... 28 18 29450

4 BMW 1Series 2011 ... 28 18 34500

[5 rows x 10 columns]

Of course, there is no observable difference in rows but observable the columns are different.

| print(vars(df))

{'_is_copy": None, '_data: BlockManager

Items: Index(['Make', 'Model', 'Y ear', 'Engine HP', 'Engine Cylinders,
"Transmission Type, 'Driven_Wheels, 'highway MPG', 'city mpg/,
'MSRPT,
dtype="object’)

AXxis 1. Rangelndex(start=0, stop=11914, step=1)

ObjectBlock: [0, 1, 5, 6], 4 x 11914, dtype: object

IntBlock: [2, 7, 8, 9], 4 x 11914, dtype: int64

FloatBlock: dlice(3, 5, 1), 2 x 11914, dtype: float64, ' item_cache” {}, " attrs: {}}

The remaining columns are:
Make

Model

Y ear

Engine HP

Engine Cylinders
Transmission Type
Driven Wheels
highway MPG

. City mpg

0. MSRP

pONE

R©O©ooNoO

Renaming the Columns

If the attribute * column names), asit isin thisinstance, then change them in line with the current
EDA.

df = df.rename(columns={"Engine HP": "HP", "Engine Cylinders': "Cylinders’, "Transmission
Type": "Transmission”, "Driven_Wheels': "Drive Mode","highway MPG": "MPG-H", "city
mpg": "MPG-C", "MSRP": "Price" })

df.head(5)

Make Modd Year HP ... DriveMode MPG-H MPG-C Price
0 BMW 1 SeriesM 2011 335.0 ... rear wheel drive 26 19 46135
1 BMW 1Series 2011 300.0 ... rear wheel drive 28 19 40650
2 BMW 1 Series 2011 300.0 ... rear whed drive 28 20 36350
3 BMW 1Series 2011 230.0 ... rear whed drive 28 18 29450
4 BMW 1Series 2011 230.0 ... rear whed drive 28 18 34500
[5 rows x 10 columns]

| print(vars(df))

{"_is_copy": None, '_data: BlockManager

Items: Index(['Make', 'Moddl', 'Y ear', 'HP', 'Cylinders, "Transmission’,
'‘Drive Mode, 'MPG-H', 'MPG-C', 'Price],
dtype="object’)

Axis 1: Rangelndex(start=0, stop=11914, step=1)

ObjectBlock: [0, 1, 5, 6], 4 x 11914, dtype: object

IntBlock: [2, 7, 8, 9], 4 x 11914, dtype: int64

12

FloatBlock: dlice(3, 5, 1), 2 x 11914, dtype: float64, '_item cache”: {},"' attrs: {}}

Renamed columns can now be seen as.
1. Make

2. Mod€

3. Year

4, HP

5. Cylinders
6. Transmission
7. Drive Mode
8. MPG-H

9. MPG-C

1

Dropping Duplicate Rows

A huge data set such as 10,000 records or more s like to have some duplicates as a cleanup

operation.

| df .shape

(11914, 10)

duplicate_rows_df = df[df.duplicated()]
print("number of duplicate rows:. ", duplicate rows df.shape)

duplicate rows df = df[df.duplicated()]
print("number of duplicate rows: ", duplicate_rows_df.shape)

number of duplicate rows. (989, 10)

| df.count()
df.count()

Make 11914
Model 11914
Year 11914
HP 11845

Cylinders 11884
Transmission 11914
DriveMode 11914

MPG-H 11914
MPG-C 11914
Price 11914

13

dtype: int64

| df = df.drop_duplicates()
From 11914 records, 989 have to be removed as duplicates.
[10925 rows x 10 columnsg]

| df.count()

Make 10925
Model 10925
Year 10925
HP 10856

Cylinders 10895
Transmission 10925
Drive Mode 10925

MPG-H 10925
MPG-C 10925
Price 10925
dtype: int64

From 11914 records, 989 have to be removed as duplicates.
[10925 rows x 10 columnsg]

| df.head(5)
Out[75]:

Make Mode Year HP .. Drive Mode MPG-H MPG-C Price
0 BMW 1 SeriesM 2011 335.0 ... rear wheel drive 26 19 46135
1 BMW 1Series 2011 300.0 ... rear wheel drive 28 19 40650
2 BMW 1Series 2011 300.0 ... rear whedl drive 28 20 36350
3 BMW 1Series 2011 230.0 ... rear whedl drive 28 18 29450
4 BMW 1Series 2011 230.0 ... rear wheel drive 28 18 34500

[5 rows x 10 columns]
Dropping theMissing or Null values.

Similar to the previous step. Here al the missing values are detected and are dropped later,

although some may replace missing values with the mean value.

| print(df.isnull().sum())

14

Make

Model

Year

HP
Cylinders
Transmission
Drive Mode
MPG-H
MPG-C
Price

W oo oo
OCDOOO(DqD

HP and Cylinders have null values. The corresponding rows are to be dropped.

df = df.dropna() # Dropping the missing values.

df.count()
df = df.dropna() # Dropping the missing values.
df.count()
Make 10827
Model 10827
Y ear 10827
HP 10827

Cylinders 10827
Transmission 10827
Drive Mode 10827

MPG-H 10827
MPG-C 10827
Price 10827
dtype: int64

Now we have 10827 records remaining.

Detecting Outliers

An outlier isapoint or set of pointsthat are different from other pointsin terms of being very
high or very low. It's often a good idea to detect and remove the outliers. Because outliers are
one of the primary reasons for resulting in aless accurate model. The following example uses

QR score technique, https:.//towardsdatasci ence.com/ways-to-detect-and-remove-the-outliers-

404d16608dba, for removing outliers. Often outliers can be seen with visualizations using a box
plot. Shown below are the box plot of MSRP, Cylinders, Horsepower and EngineSize. Herein all

the plots, you can find some points are outside the box they are none other than outliers.

15

IQR (interquartile range) also called the midspread, middle 50%, or H-spread, is a measure of

statistical dispersion, being equal to the difference between 75th and 25th percentiles, or between

upper and lower quartiles, IQR = Q3 — Q1.

| sns.boxplot(x=df['HP])

L

200 400 600 800
HP

1000

| sns.boxplot(x=df['Cylinders])

sns.boxplot(x=df['Cylinders])

16

0 2 4 G 8 10 12
Cylinders

14 16

Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)

IQR=Q3-Q1
print(IQR)
Y ear 9.0
HP 130.0
Cylinders 2.0
MPG-H 8.0
MPG-C 6.0
Price 21327.5
dtype: float64

Removing the outliers from the data:

df.shape

df = df[~((df < (Q1- 1.5 * IQR)) [(df > (Q3 + 1.5 * IQR))).any(axis=1)]

(9191, 10)

Now, we have 9191 records.

Plot Different Features against One Another (Scatter), against Frequency (Histogram)
Histogram refers to the frequency of occurrence of variablesin an interval. In this case, there are

mainly 10 different types of car manufacturing companies, but it is often important to know who

17

has the most number of cars. To do thishistogram is one of thetrivial solutionswhich lets us know

the total number of cars manufactured by a different company.

df.Make.value_counts().nlargest(40).plot(kind="bar', figsize=(10,5))
plt.title("Number of cars by make")

plt.ylabel (‘'Number of cars)

plt.xlabel (‘M ake);

Mumber of cars by make

1000

a0o0
@
m
“ 0o
5
5
L
E
3 00
: |||H||I|||I
0 IIIIIIIIIIIIll.-
TECECQLmE@EES U FE RO Mo =Sk MW U ECO LGk C D W DS oW
YRR R N i L
ErETe0RE s ERSTES d@5cogEchegtaged=g B
5 P =EE 8 a Esa— &3 E E =r
& @ £ 285 8 g%e 2 STE
2 = 3 53 T3
£
Make
Heat Maps

Heat Maps isatype of plot which is necessary when we need to find the dependent variables.
One of the best ways to find the relationship between the features can be done using heat maps.
In the heat map figure shown below, we know that the price feature depends mainly on the
Engine Size, Horsepower, and Cylinders.

plt.figure(figsize=(10,5))

c=df.corr()

sns.heatmap(c,cmap="BrBG" ,annot=True)
C

18

Y ear HP Cylinders MPG-H MPG-C Price

Y ear 1.000000 0.326726 -0.133920 0.378479 0.338145 0.592983
HP 0.326726 1.000000 0.715237 -0.443807 -0.544551 0.739042
Cylinders -0.133920 0.715237 1.000000 -0.703856 -0.755540 0.354013
MPG-H 0.378479 -0.443807 -0.703856 1.000000 0.939141 -0.106320
MPG-C 0.338145 -0.544551 -0.755540 0.939141 1.000000 -0.180515
Price 0.592983 0.739042 0.354013 -0.106320 -0.180515 1.000000

The correlation coefficient values across the diagonal are all one naturally, an entity relatesto
itself perfectly. The next highest correlation is between MPG-H and MPG-C, which is quite
reasonable. Negative correlation such between Cylinders and MPG-C mean when one goes up,
the other goes down. The lowest correl ation value is between Price and MPG-H which means

one has hardly any effect on the other.

The heat map is a visualization of correlations.
Scatter plot

We generally use scatter plotsto find the correlation between two variables. Here the scatter points
are plotted between Horsepower and Price as show on the plot shown below. We can easily

visualize atrend line. These features provide a good scattering of points.

fig, ax = plt.subplots(figsize=(10,6))
ax.scatter(df['HP1, df['Price)

19

ax.set_xlabel('HP)
ax.set_ylabel('Price)
plt.show()

sf®
70000
80000 ?
i
L]
50000 - ’
s
& 40000 .
0 []
30000
20000

10000

100 200 300 400 500
HP

The above examples show some of the stepsinvolved in Exploratory Data Analysis (EDA).
There are many more. Thisisagood start on how to perform agood EDA given any data sets.

Useful Sources:

1. https://www.sciencedirect.com/topi cs/computer-science/supervised-learning

2. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System Structure and
Classification Rule for Recognition in Partially Exposed Environments'. |EEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 1, 67-71.

[Web Link]

20

