
1

Introduction to Machine Learning

Machine learning is aimed at discovering patterns in data. It gives computers the ability to learn

without being explicitly programmed. It involves using statistical methods to create programs that

either improve performance over time, or detect patterns in massive amounts of data that humans

would be unlikely to find. Machine Learning explores the study and construction of algorithms that can

learn from and make predictions on data. Such algorithms operate by building a model from example inputs

in order to make data driven predictions or decisions, rather than following strictly static program

instructions. In short, we may say that Machine Learning is a collection of algorithms and techniques used

to create computational systems that learn from data in order to make predictions and inferences.

Machine learning is a subset of Artificial Intelligence (AI).

Data used in analysis is about real-world phenomenon. For example, daily stock prices, earnings,

and reviews are some of the indicators of stock market. This data could somehow provide the

means for understanding the stock market and serve to make some predictions. Each piece of

data describes an observation. The collection of these observations can assist us in serving some

desired goal within a context, in this case that of the stock market. How do we process the data

to find the answers we may be seeking? We use models of reality involving masses of data, look

for relationships among the attributes that represent data and perform processing operations

based on those relationships.

A partial classification of techniques used in machine learning are shown in Figure 1.

Figure 1: Machine Learning Techniques Classification

1. Machine Learning

1.1 Supervised Learning

1.1.1 Classification

1.1.1.1 Image Classification

1.1.1.2 Machine Translation

1.1.2 Regression

1.1.2.1 Stock Prediction

1.1.2.2 Image Masking

1.2 Unsupervised Learning

1.2.1 Machine Learning

1.2.1.1 Dimension Reduction

1.2.1.2 Clustering

1.2.2 Deep Learning

1.2.2.1 Representation Learning

2

1.2.2.2 Generative Models

Supervised learning is the machine learning task of learning a function that maps an input to an

output based on example input-output pairs. It infers a function from labeled training data

consisting of a set of training examples.

In supervised machine learning, labeled data set is used as the basis for predicting through the

use of machine learning algorithms. Two of the common methods are classification and

regression.

In the category of supervised learning, classification techniques focus on predicting a qualitative

response by analyzing data and recognizing patterns. For example, this type of technique is used

to classify whether or not a credit card transaction is fraudulent. Regression techniques begins

with a choice of a plausible mathematical model that is likely to the given data. Appropriate

learning algorithms are then used to try out and find a solution that best fits the model.

In unsupervised machine learning, the users do not need to supervise the model. The model

works on its own to discover previously undetected patterns and information. Algorithms almost

always require structured data, while deep learning networks rely on layers of artificial neural

networks (ANN). If the outcome from machine learning produces an incorrect result, the

algorithms go through a learning process. In deep learning, the mistakes are corrected through

an automated process.

The following is a typical sequence of activities on data:

1. Take the raw data and identify the attributes inherently associated the data, making it
information.

2. Take the information and explore the possibilities
3. Extract meaningful features relevant to problem solution and outcomes
4. Construct and try model based on perceived pattern in data.
5. Modify the model parameters or change to other models improved solutions

Some other examples of situations for machine learning are weather forecasting, email spam

identification, fraud detection, probability of customer purchasing a product or renewal of

insurance policy, predicting the chances of a person with a known illness, etc.

All situations can be described in terms data which may consist of text, categories or numerical

values. Data is about objects in the world such as a person, customers, buyers, sellers, products,

and any other situation of interest to us.

3

Observed data in a population may be expressed in terms of nominal, ordinal, interval, ration

scales, etc.

The following are some examples.

Scale Type Object Example Attribute Name Example of Measurement
Nominal Flower

Person

Telephone

Color
Gender
Age

Residence
Brand

Red, Yellow, Purple,
Orange
Male, Female, other
Infant, Child, Teen, Adult,
Elderly
Suburb, City, Town
Apple, Samsung, LG

Ordinal Person

Service

Academic Rank
Clothing Size
Grade
Satisfaction

Professor, Lecturer
Small, Medium, large
A, B, C
Satisfied, Not satisfied,
Neutral

Interval Person Income in
thousands
IQ

Below 50, 50-100, over
100
80-100, 100-120, 120-140

Ratio
(values cab
compared as double,
half, etc.

Person Height (ft)
Age
Weight (lbs)

5, 6, 7, etc.
1, 2, 3, etc.
10, 20, 30, etc.

In these notes, we will explore approaches to machine learning, with examples of problems and

solutions using data analysis and data intelligence. Solutions are implemented in Python

programming language. Python has been chosen because it a general-purpose programming

language. It is open source meaning that it is available free of charge and allows access to

programs and tools developed by other worldwide.

Anaconda Python Distribution is a good choice to download and install Python. It comes

bundled with almost everything that you would need to start your data science journey. In

addition to the core Python language, it includes many useful packages such as Numpy,

Matplotlib, SciPy, Statsmodels, Pandas, Sklearn, and many more. Anaconda comes with an

Integrated Development and Learning Environment (IDLE) with a built-in console for creating

files of programs, running program in parts or completely, and provides a help facility.

Data values on such things as gender, marital status can be expressed in categories such as male,

female for gender, and marital status as married, unmarried. For ease of processing in machine

4

learning they can be expressed as numerical such 1 for male, 2 for female, and likewise 1

married and 0 unmarried.

Consider the following artificially constructed trivial data example of using Pandas package.

import pandas as pd
df= pd.DataFrame({'A':['low','medium','high'], 'B':[10,20,30]}, index=[0,1,2])
print(df)

Data displayed by print statement is:

A B
0 low 10
1 medium 20
2 high 30

The data can factorized by assigning numeric values to categories of low, medium, and high as
0,1, 2.

df['A_pd_factorized'] = pd.factorize(df['A'])[0]
print (df)

A B A_pd_factorized
0 low 10 0
1 medium 20 1
2 high 30 2

The factorization may be chosed as 10, 20, and 30 instead of 0, 1, and 2

Ex:

We can also convert textual data values to numbers by using the ‘Label Encoder’ function of Scikit-

learn. If the number of levels is high (example zip code, state, etc.), then you may apply business logic

to combine levels into groups. For example, a zip code or state can be combined to regions; however, in

this method there is a risk of losing critical information. We may combine categories based on similar

frequency (new category can be high, medium, low). Following are some examples of achieving this

goal.

5

It is often desirable to normalize data i.e. transforming attribute values to roughly the same

order of magnitude. Normalizing data can be achieved by Min-Max scaling, after removing the

extreme outliers in the given data as follows.

Xnormalized=(X-Xmin)/(Xmax-Xmin)

The data may be standardized by making the values to have a zero mean.

Thus, Z=(X-µ)/ơ where µ is the mean and ơ is the standard deviation.

Generally, in machine learning exercises a large data set is used. Examples of such data sets can

be found through the Internet.

Example 1

In this example, the data set known as IRIS from the UCI Machine Laboratory Repository at

https://archive.ics.uci.edu/ml/datasets/iris. It is perhaps the best-known database to be found in

the pattern recognition literature. The data set contains 3 classes of 50 instances each, where each

class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are

NOT linearly separable from each other.

The data set attributes are:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
-- Iris Setosa
-- Iris Versicolour
-- Iris Virginica

Machine learning goal is to predict the class of iris plant.

In the details that follow, coding for each distinct step will be enclosed in a box. Comments on

coding and the coding execution outcome will appear after the corresponding box.

Preparing the Environment for Coding

In these notes, coding statements are enclosed in a box for convenience. The coding

environment uses pre-built relevant code in the form of available packages commonly known as

Python libraries. These libraries provide standardized solutions for many problems that occur in

6

everyday programming. In Anaconda distribution of Python most of the libraries are included in

the distribution installation. Selected libraries then simply imported as needed.

Package bought in the environment for this example are:

numpy: It is a library for array processing for numbers, strings, records, and objects.

sklearn (Scikit-learn) is a library for machine learning.

The import operations often assign a nickname for ease of use in coding. Here, the nickname

used for numpy is np. This is a common practice.

from sklearn import datasets
import numpy as np
from sklearn import preprocessing
iris=datasets.load_iris()
x=iris.data[:,[2,3]]
y=iris.target

x is a matrix of two columns from iris data. The associated labels are petal length and

petal width. y is the target array.

Petal Length and Petal width are selected as the control variables, x1 and x2. The target variable,

y, consists of an array of zeroes, followed by ones, further followed by twos corresponding to

categories of Iris Setosa, Iris Versicolour, and Iris Virginica.

We can display extracted data from iris for x and y, where x is a matrix of two columns of iris

data with 150 rows and y is an array of the same size.

std_scale = preprocessing.StandardScaler().fit(x)
X_std = std_scale.transform(x)
x_std = std_scale.transform(x)
minmax_scale = preprocessing.MinMaxScaler().fit(x)
x_minmax = minmax_scale.transform(x)

print('Mean before standardization: petal length={:.1f}, petal width={:.1f}'
.format(x[:,0].mean(), x[:,1].mean()))
print('STD before standardization: petal length={:.1f}, petal width={:.1f}' .format(x[:,0].std(),
x[:,1].std()))
print('Mean after standardization: petal length={:.1f}, petal width={:.1f}'
.format(x_std[:,0].mean(), x_std[:,1].mean()))
print('STD after standardization: petal length={:.1f}, petal width={:.1f}'
.format(x_std[:,0].std(), x_std[:,1].std()))

7

Mean before standardization: petal length=3.8, petal width=1.2
STD before standardization: petal length=1.8, petal width=0.8
Mean after standardization: petal length=-0.0, petal width=-0.0
STD after standardization: petal length=1.0, petal width=1.0

The above printed outputs have some statistics of variables petal length and petal width data in

iris before any standardization of the data.

print('\nMin value before min-max scaling: patel length={:.1f}, patel
width={:.1f}'.format(x[:,0].min(), x[:,1].min()))
print('Max value before min-max scaling: petal length={:.1f}, petal
width={:.1f}'.format(x[:,0].max(), x[:,1].max()))
print('Min value after min-max scaling: patel length={:.1f}, patel
width={:.1f}'.format(x_minmax[:,0].min(), x_minmax[:,1].min()))
print('Max value after min-max scaling: petal length={:.1f}, petal
width={:.1f}'.format(x_minmax[:,0].max(), x_minmax[:,1].max()))

Min value before min-max scaling: patel length=1.0, patel width=0.1
Max value before min-max scaling: petal length=6.9, petal width=2.5
Min value after min-max scaling: patel length=0.0, patel width=0.0
Max value after min-max scaling: petal length=1.0, petal width=1.0

The sklearn.preprocessing package provides several common utility functions to change raw

feature vectors into a representation that is more suitable for the downstream estimators. In

general, learning algorithms benefit from standardization of the data set. If some outliers are

present in the set, robust scalers or transformers are more appropriate. The behaviors of the

different scalers, transformers, and normalizers on a dataset containing marginal outliers is

highlighted in Compare the effect of different scalers on data with outliers.

Feature Construction or Generation

Machine learning algorithms give best results only when we provide it the best possible features that

structure the underlying form of the problem that you are trying to address. Often these features have to

be manually created by spending a lot of time with actual raw data and trying to understand its

relationship with all other data that you have collected to address a business problem.

It means thinking about aggregating, splitting, or combining features to create new features, or

decomposing features. Often this part is talked about as an art form and is the key differentiator in

competitive machine learning.

8

Feature construction is manual, slow, and requires subject-matter expert intervention heavily in order to

create rich features that can be exposed to predictive modeling algorithms to produce best results.

Summarizing the data is a fundamental technique to help us understand the data quality and issues/gaps.

The following maps commonly use tabular and graphical data summarization methods for different data

types.

Commonly Used Data Summarization Method
Discrete/Qualitative Quantitative/Quantitative

Tabular Methods Graphical Methods Tabular Methods Graphical Methods

 Frequency
distribution

 Relative frequency
distribution

 % Frequency
distribution

 Cross tabulation

 Bar Graph
 Pie Chart
 Other visualizations

 Frequency
distribution

 Relative frequency
distribution

 Cumulative
Frequency
distribution

 Cumulative relative
frequency
distribution

 Cross tabulation

 Line plot
 Dot plot
 Histogram
 Scatter diagram

Exploratory Data Analysis (EDA)

In EDA understanding about the available data is done by summarizing and visualizing techniques.

EDA allows both univariate and multivariate analysis. Through the process of EDA, we can ask to

define the problem statement or definition on our data set which is very important.

Example 2

Large sets of data are available from a variety of sources. We will make use of some of them.

Consider, for example data on cars available from:

https://www.kaggle.com/CooperUnion/cardataset

We can import it for our work. This data contains more of 10, 000 rows and more than 10

columns which contains features of the car such as Engine Fuel Type, Engine HP, Transmission

Type, highway MPG, city MPG and many more. We will explore data and make it ready to

model machine learning.

The environment is adding pandas, seaborn, and matplotlib.

9

Seaborn is a statistical data visualization package, nicknamed sns.

Matplotlib provides publication quality figure, nicknamed plt.

import pandas as pd
import numpy as np
import seaborn as sns #visualisation
import matplotlib.pyplot as plt #visualisation
%matplotlib inline
sns.set(color_codes=True)
df = pd.read_csv("data.csv")

%matplotlib inline sets the backend of matplotlib to the 'inline' backend. The output of plotting

commands is displayed inline within frontends. The resulting plots can also be stored, copied and

pasted.

The data frame, df is the name assigned to data loaded from the iris data worksheet. Some quick

of loaded data is shown

df.count()
print(df.describe())
print(df.shape)

Count:
Make 11914
Model 11914
Year 11914
Engine Fuel Type 11911
Engine HP 11845
Engine Cylinders 11884
Transmission Type 11914
Driven_Wheels 11914
Number of Doors 11908
Market Category 8172
Vehicle Size 11914
Vehicle Style 11914
highway MPG 11914
city mpg 11914
Popularity 11914
MSRP 11914
dtype: int64

Description:
Year Engine HP ... Popularity MSRP

count 11914.000000 11845.00000 ... 11914.000000 1.191400e+04

10

mean 2010.384338 249.38607 ... 1554.911197 4.059474e+04
std 7.579740 109.19187 ... 1441.855347 6.010910e+04
min 1990.000000 55.00000 ... 2.000000 2.000000e+03
25% 2007.000000 170.00000 ... 549.000000 2.100000e+04
50% 2015.000000 227.00000 ... 1385.000000 2.999500e+04
75% 2016.000000 300.00000 ... 2009.000000 4.223125e+04
max 2017.000000 1001.00000 ... 5657.000000 2.065902e+06

[8 rows x 8 columns]

Shape:
(11914, 16)

The call df.head(5) provides a partial view, five rows, and all sixteen columns, although not all

are displayed.

print(df.head(5)) #print the top 5 rows

Make Model Year ... city mpg Popularity MSRP
0 BMW 1 Series M 2011 ... 19 3916 46135
1 BMW 1 Series 2011 ... 19 3916 40650
2 BMW 1 Series 2011 ... 20 3916 36350
3 BMW 1 Series 2011 ... 18 3916 29450
4 BMW 1 Series 2011 ... 18 3916 34500
[5 rows x 16 columns]

The column labels in this database are:
1. Make
2. Model Year
3. Engine
4. Fuel Type
5. Engine HP
6. Engine Cylinders
7. Transmission Type
8. Driven_Wheels
9. Number of Doors
10. Market Category
11. Vehicle Size
12. Vehicle Style
13. highway MPG city
14. mpg
15. Popularity
16. MSRP

11

print(df.tail(5))

Make Model Year ... city mpg Popularity MSRP
11909 Acura ZDX 2012 ... 16 204 46120
11910 Acura ZDX 2012 ... 16 204 56670
11911 Acura ZDX 2012 ... 16 204 50620
11912 Acura ZDX 2013 ... 16 204 50920
11913 Lincoln Zephyr 2006 ... 17 61 28995
[5 rows x 16 columns]

print(vars(df))

{'_is_copy': None, '_data': BlockManager
Items: Index(['Make', 'Model', 'Year', 'Engine Fuel Type', 'Engine HP',

'Engine Cylinders', 'Transmission Type', 'Driven_Wheels',
'Number of Doors', 'Market Category', 'Vehicle Size', 'Vehicle Style',
'highway MPG', 'city mpg', 'Popularity', 'MSRP'],
dtype='object')

Axis 1: RangeIndex(start=0, stop=11914, step=1)
FloatBlock: [4, 5, 8], 3 x 11914, dtype: float64
IntBlock: [2, 12, 13, 14, 15], 5 x 11914, dtype: int64
ObjectBlock: [0, 1, 3, 6, 7, 9, 10, 11], 8 x 11914, dtype: object, '_item_cache': {}, '_attrs': {}}

Selecting Attributes of Interest by Deleting Unwanted Columns for an EDA Session

df = df.drop(['Engine Fuel Type', 'Market Category', 'Vehicle Style', 'Popularity', 'Number of
Doors', 'Vehicle Size'], axis=1)
df.head(5)

Make Model Year ... highway MPG city mpg MSRP
0 BMW 1 Series M 2011 ... 26 19 46135
1 BMW 1 Series 2011 ... 28 19 40650
2 BMW 1 Series 2011 ... 28 20 36350
3 BMW 1 Series 2011 ... 28 18 29450
4 BMW 1 Series 2011 ... 28 18 34500
[5 rows x 10 columns]

Of course, there is no observable difference in rows but observable the columns are different.

print(vars(df))

{'_is_copy': None, '_data': BlockManager
Items: Index(['Make', 'Model', 'Year', 'Engine HP', 'Engine Cylinders',

'Transmission Type', 'Driven_Wheels', 'highway MPG', 'city mpg',
'MSRP'],
dtype='object')

12

Axis 1: RangeIndex(start=0, stop=11914, step=1)
ObjectBlock: [0, 1, 5, 6], 4 x 11914, dtype: object
IntBlock: [2, 7, 8, 9], 4 x 11914, dtype: int64
FloatBlock: slice(3, 5, 1), 2 x 11914, dtype: float64, '_item_cache': {}, '_attrs': {}}

The remaining columns are:
1. Make
2. Model
3. Year
4. Engine HP
5. Engine Cylinders
6. Transmission Type
7. Driven_Wheels
8. highway MPG
9. city mpg
10. MSRP

Renaming the Columns

If the attribute *column names), as it is in this instance, then change them in line with the current

EDA.

df = df.rename(columns={"Engine HP": "HP", "Engine Cylinders": "Cylinders", "Transmission
Type": "Transmission", "Driven_Wheels": "Drive Mode","highway MPG": "MPG-H", "city
mpg": "MPG-C", "MSRP": "Price" })
df.head(5)

Make Model Year HP … Drive Mode MPG-H MPG-C Price
0 BMW 1 Series M 2011 335.0 … rear wheel drive 26 19 46135
1 BMW 1 Series 2011 300.0 … rear wheel drive 28 19 40650
2 BMW 1 Series 2011 300.0 … rear wheel drive 28 20 36350
3 BMW 1 Series 2011 230.0 … rear wheel drive 28 18 29450
4 BMW 1 Series 2011 230.0 … rear wheel drive 28 18 34500
[5 rows x 10 columns]

print(vars(df))

{'_is_copy': None, '_data': BlockManager
Items: Index(['Make', 'Model', 'Year', 'HP', 'Cylinders', 'Transmission',

'Drive Mode', 'MPG-H', 'MPG-C', 'Price'],
dtype='object')

Axis 1: RangeIndex(start=0, stop=11914, step=1)
ObjectBlock: [0, 1, 5, 6], 4 x 11914, dtype: object
IntBlock: [2, 7, 8, 9], 4 x 11914, dtype: int64

13

FloatBlock: slice(3, 5, 1), 2 x 11914, dtype: float64, '_item_cache': {}, '_attrs': {}}

Renamed columns can now be seen as:
1. Make
2. Model
3. Year
4. HP
5. Cylinders
6. Transmission
7. Drive Mode
8. MPG-H
9. MPG-C
10. Price

Dropping Duplicate Rows

A huge data set such as 10,000 records or more is like to have some duplicates as a cleanup

operation.

df.shape

(11914, 10)

duplicate_rows_df = df[df.duplicated()]
print("number of duplicate rows: ", duplicate_rows_df.shape)

duplicate_rows_df = df[df.duplicated()]
print("number of duplicate rows: ", duplicate_rows_df.shape)

number of duplicate rows: (989, 10)

df.count()

df.count()

Make 11914
Model 11914
Year 11914
HP 11845
Cylinders 11884
Transmission 11914
Drive Mode 11914
MPG-H 11914
MPG-C 11914
Price 11914

14

dtype: int64

df = df.drop_duplicates()
From 11914 records, 989 have to be removed as duplicates.
[10925 rows x 10 columns]

df.count()

Make 10925
Model 10925
Year 10925
HP 10856
Cylinders 10895
Transmission 10925
Drive Mode 10925
MPG-H 10925
MPG-C 10925
Price 10925
dtype: int64

From 11914 records, 989 have to be removed as duplicates.
[10925 rows x 10 columns]

df.head(5)

Out[75]:
Make Model Year HP ... Drive Mode MPG-H MPG-C Price

0 BMW 1 Series M 2011 335.0 ... rear wheel drive 26 19 46135
1 BMW 1 Series 2011 300.0 ... rear wheel drive 28 19 40650
2 BMW 1 Series 2011 300.0 ... rear wheel drive 28 20 36350
3 BMW 1 Series 2011 230.0 ... rear wheel drive 28 18 29450
4 BMW 1 Series 2011 230.0 ... rear wheel drive 28 18 34500
[5 rows x 10 columns]

Dropping the Missing or Null values.

Similar to the previous step. Here all the missing values are detected and are dropped later,

although some may replace missing values with the mean value.

print(df.isnull().sum())

15

Make 0
Model 0
Year 0
HP 69
Cylinders 30
Transmission 0
Drive Mode 0
MPG-H 0
MPG-C 0
Price 0

HP and Cylinders have null values. The corresponding rows are to be dropped.

df = df.dropna() # Dropping the missing values.
df.count()

df = df.dropna() # Dropping the missing values.
df.count()
Make 10827
Model 10827
Year 10827
HP 10827
Cylinders 10827
Transmission 10827
Drive Mode 10827
MPG-H 10827
MPG-C 10827
Price 10827
dtype: int64

Now we have 10827 records remaining.

Detecting Outliers

An outlier is a point or set of points that are different from other points in terms of being very

high or very low. It's often a good idea to detect and remove the outliers. Because outliers are

one of the primary reasons for resulting in a less accurate model. The following example uses

IQR score technique, https://towardsdatascience.com/ways-to-detect-and-remove-the-outliers-

404d16608dba, for removing outliers. Often outliers can be seen with visualizations using a box

plot. Shown below are the box plot of MSRP, Cylinders, Horsepower and EngineSize. Herein all

the plots, you can find some points are outside the box they are none other than outliers.

16

IQR (interquartile range) also called the midspread, middle 50%, or H-spread, is a measure of

statistical dispersion, being equal to the difference between 75th and 25th percentiles, or between

upper and lower quartiles, IQR = Q3 − Q1.

sns.boxplot(x=df['HP'])

sns.boxplot(x=df['Cylinders'])

sns.boxplot(x=df['Cylinders'])

17

Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)

Year 9.0
HP 130.0
Cylinders 2.0
MPG-H 8.0
MPG-C 6.0
Price 21327.5
dtype: float64

Removing the outliers from the data:

df = df[~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))).any(axis=1)]
df.shape

(9191, 10)

Now, we have 9191 records.

Plot Different Features against One Another (Scatter), against Frequency (Histogram)
Histogram refers to the frequency of occurrence of variables in an interval. In this case, there are

mainly 10 different types of car manufacturing companies, but it is often important to know who

18

has the most number of cars. To do this histogram is one of the trivial solutions which lets us know

the total number of cars manufactured by a different company.

df.Make.value_counts().nlargest(40).plot(kind='bar', figsize=(10,5))
plt.title("Number of cars by make")
plt.ylabel('Number of cars')
plt.xlabel('Make');

Heat Maps
Heat Maps is a type of plot which is necessary when we need to find the dependent variables.

One of the best ways to find the relationship between the features can be done using heat maps.

In the heat map figure shown below, we know that the price feature depends mainly on the

Engine Size, Horsepower, and Cylinders.

plt.figure(figsize=(10,5))
c= df.corr()
sns.heatmap(c,cmap="BrBG",annot=True)
c

19

Year HP Cylinders MPG-H MPG-C Price
Year 1.000000 0.326726 -0.133920 0.378479 0.338145 0.592983
HP 0.326726 1.000000 0.715237 -0.443807 -0.544551 0.739042
Cylinders -0.133920 0.715237 1.000000 -0.703856 -0.755540 0.354013
MPG-H 0.378479 -0.443807 -0.703856 1.000000 0.939141 -0.106320
MPG-C 0.338145 -0.544551 -0.755540 0.939141 1.000000 -0.180515
Price 0.592983 0.739042 0.354013 -0.106320 -0.180515 1.000000

The correlation coefficient values across the diagonal are all one naturally, an entity relates to

itself perfectly. The next highest correlation is between MPG-H and MPG-C, which is quite

reasonable. Negative correlation such between Cylinders and MPG-C mean when one goes up,

the other goes down. The lowest correlation value is between Price and MPG-H which means

one has hardly any effect on the other.

The heat map is a visualization of correlations.

Scatterplot

We generally use scatter plots to find the correlation between two variables. Here the scatter points

are plotted between Horsepower and Price as show on the plot shown below. We can easily

visualize a trend line. These features provide a good scattering of points.

fig, ax = plt.subplots(figsize=(10,6))
ax.scatter(df['HP'], df['Price'])

20

ax.set_xlabel('HP')
ax.set_ylabel('Price')
plt.show()

The above examples show some of the steps involved in Exploratory Data Analysis (EDA).

There are many more. This is a good start on how to perform a good EDA given any data sets.

Useful Sources:
1. https://www.sciencedirect.com/topics/computer-science/supervised-learning
2. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System Structure and

Classification Rule for Recognition in Partially Exposed Environments". IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 1, 67-71.
[Web Link]

