Linear Regression for Machine L earning

Linear regression is used to model relationship between two variables by using alinear equation
of the form:

y =a+ bx Q)

The variable y may be viewed as being related to variable x in some way.

The goal isto find that relationship from values of x, called the predictor variable, and the
corresponding values of y, called the outcome variable, from a set of observed or measured data
points for x and y. Once a satisfactory relationship has been found, we can use this relationship
to predict values of y for achosen value of x. Equation (1) models a straight-line relationship,
where ais known as the intercept, the value of y when x is zero, and b represents the slope of the
line. Thelineis caled aregressions line because it is not likely to connect all data points but a
closest approximation that can be found from the given data points. The processis called curve
fitting because we try make the line pass through all data points evenly if not perfectly. In order
to have confidence in the calculated relationship based on the observed sample data, the sample
has to be representative of the population from which the sampleis drawn.

Once a credible relationship has been found for the given data, it can then be used to make
prediction for an outcomey based on values of predictor Xx.

Before carrying out regression, a scatter plot of observed or measured data should be made to
assess Whether alinear regression appears to be a reasonable choice.

Figure 1 shows a scatter diagram of automobile data consisting of 1267 data points for several
automobile models and attributes. The scatter plot isfor selected attributes of CO2 emissions for
engine sizes. The density of datain this plot has made the points appear as blobs as opposed to
distinct points.

Here x isnamed as Engine Size and y is names as Co, emissions.

Figure 1. Sample Data

500

450

400

350

300

250

Co2 Emissions

200

150

100

Engine Size

Figure 2: Graph Shows the Regression Line, in red, after Linear Regression

While the line passes through a few points, it can be viewed as a reasonabl e approximation of the
situation. There can be multiple lines based on the intercept and slope. What the linear
regression algorithm does is to try various lines through the data points and return the line that
fitsin terms of least deviation of points from the line. Statistical measures are used to determine
how well afit may serve in making predictions.

Some examples of business applications of linear regression are:

Predict future prices or costs of itemsto be purchased by a business.

Predict revenue from sales

Compare performance of newly introduced products versus the existing ones.

View theincrease in emissions with the increase in power/si ze of automobile engines
Predict rise and fall in disease based on collected on cases which have aready occurred.

Regression methods falls in the category of supervised learning. Supervised learning involves
inferring afunction from labeled training data. It is called supervised because the modeler selects
amodel based on aview of data. Instead of a straight-line model, the modeler could have chosen
apolynomia or an exponential curve. Once amodel is chosen, it can go through atraining using
sample data. Training consists of trying out by making the line pass through the datain different
positions and ng whether atria produces better or worse outcome. You may visuaizeit as
sitting with aruler and placing it in different positions through the data until you have found the
best placefor it. Thisisthelearning process.

In performing regression using Python programming language, Scikit-Learn (sklearn) packageis
used to generate regression model and to train it with test data.

We will describe the various programming steps and show intermediate outputs until the process
iscompleted. Details of mathematical calculations for regression anaysis will not be shown. We
will consider those details as hidden in Scikit-Learn package. The goa here is how to use Scikit-
Learn in producing models for predictions without getting involved in mathematics of regression
analysis. Thisis no different than using a square root function in a programming language to find
sguare root of anumber rather than writing code for calculating it from its mathematical
formulation.

The progression through the solution will be demonstrated in terms of a number of small steps
with corresponding outcomes and explanatory comments. The actual coding will appear in
boxes to separate from explanations.

Step 1: Setting Up the Environment

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from sklearn import linear_ model

Here pre-built code is brought in from various avail able packages called Python libraries. If you
are using a Python distribution such as Anaconda, many such libraries are included already. You
don’t haveinstall them yourselves. Y ou just have to tell what to import in your current

environment. Here the four packages needed are pandas, numpy, matplotlib member pyplot, and
sklearn mentioned earlier. Pd, np, plt, are nicknames for ease of use of these packagesin writing

program code.

Pandas is a high-level data manipulation tool set. Numpy isamath library, in particular for
matrices. Matplotlib is a plotting package that provides 2D and 3D plotting. Sklearn is machine
learning library with classification, regression, and clustering algorithms.

Step 2: Loading Data for Regression Analysis

The automobile data for this case study has been loaded from the following source and saved as

an MS Excel filein your working directory as named below:
https.//s3-api.us-geo.obj ectstorage.softlayer.net/cf-courses-data/ CognitiveClass/M L 0101 ENv3/1 abs/Fuel ConsumptionCo2.csv

df=pd.read_excel (r'Fuel ConsumptionCo2.xIsx’)
df.head()

Datainto adata frame called df. Any name can be assigned for subsequent use in coding. The
coding line df.head() provides a partia listing of data shown below. Of course you can print df
itself.

MODELYEAR MAKE ... FUELCONSUMPTION_COMB_MPG COZ2EMISSIONS

0 2014 ACURA .. 33 196
1 2014 ACURA .. 29 221
2 2014 ACURA .. 48 136
3 2014 ACURA .. 25 255
4 2014 ACURA .. 27 244

[5 rows x 13 columns]

The data has 13 columns, only two of them are called Engine Size and CO, emissions are of
interest to usin this case study. First 12 records belong to one automobile model are shown
below:

ENGINESIZE CO2EMISSIONS

2 196
2.4 221
15 136
3.5 255
3.5 244
3.5 230
3.5 232
3.7 255
3.7 267
2.4 212
2.4 225
3.5 239

Step 3: Scatter Plot of Data and Select Featuresfor Regression

plt.scatter(df["ENGINESIZE"], df["CO2EMISSIONS"], color="blue")
plt.xlabel("ENGINESIZE")

plt.ylabel("CO2EMISSIONS")

plt.show()

data = df[["ENGINESIZE","CO2EMISSIONS"]] #selected features

The resulting plot of the entire data 1267 records for the Engine Size and Corresponding

CO2Emissions are shown in Figure 3.

Figure 3: Scatter Plot of Automobile Data

500 4

450

400

350

300

250 4

CoZ2 Emissions

200 - l
150 - |‘

[)

'l" H

100

4 5 B 7 8
Engine Size

1

R r—

Although the data points are widely scattered, they do point out to the possibility of using a
simple linear model.
Step 4: Selecting Training Data and Carrying Out Regression and Print Results

train= df[:(int((len(df)*.8)))]

test= df[(int((len(df)*.8))):]

regr= linear_model.LinearRegression()
train_x= np.array(train[["ENGINESIZE"]])
train_y= np.array(train[["CO2EMISSIONS"]])
regr.fit(train_x, train_y)

print ("Coefficient : ",regr.coef)

print ("Intercept : ",regr.intercept_)

Eighty percent has been selecting for training and test purposes. Training data to fit the model
and testing data to test it. Sklearn will be used to make those choices.

The printed results are:

Coefficient : [[38.79512384]]
Intercept : [127.16089951]

Given the general linear model equation (1), the corresponding regression line based on given data is:
y =127.17 + 38.8x (2)

Step 5: Plotting the Regression Line for Scatter Plot

plt.scatter(train["ENGINESIZE"], train["CO2EMISSIONS"], color="blue’)
plt.plot(train_x, regr.coef *train_x + regr.intercept_, '-r')

plt.xlabel ("Engine size")

plt.ylabel ("Emission™)

Step 6: Making Predictions

def get_regression_predictions(input_features, intercept, slope):
predicted_values= input_features*slope + intercept
return predicted_values

The function get_regression_prediction simply returns the predicted value based on model
shown in equation (2). Now this predictor can be called as often as needed by ssimply feeding a
value of engine size.

One example of such acall is shown below.

def get_regression_predictions(input_features, intercept, slope):
predicted_values= input_features*slope + intercept
return predicted_values

The predicted value of emission, model based estimation, is:

Output: Estimated Emission: 262.9528329350173

Step 7: Checking the Goodness of Fit

from sklearn.metrics import r2_score

test_x = np.array(test[[' ENGINESIZE']])

test_y = np.array(test[['CO2EMISSIONS']])

test_y_ = regr.predict(test_x)

print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)))
print("Mean sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test_y_ , test_y))

Here the values of x and y are compared with the corresponding predictions.
The resulting output is:

M ean absolute error: 20.60
Mean sum of squares (MSE): 746.45
R2-score: 0.71

R? (R-Squared) is a goodness-of-fit measure for linear regression models. It is also known as the
coefficient of determination.

In calculation, R? can be represented as:

R?= Variance_Explained by the Model/Total_Variance

This statistic indicates the percentage of the variance in the dependent variable that

the independent variables explain collectively. R-squared measures the strength of the
relationship between your model and the dependent variable on a convenient 0 — 100% scale. An
R?of 1 indicates a perfect fit which is highly unlikely based on observed or measured data.
R-squared is aways between 0 and 100%:

0% represents amodel that does not explain any of the variation in the response variable around
its mean. The mean of the dependent variable predicts the dependent variable as well asthe
regression model.

100% represents amodel that explains all of the variation in the response variable around its
mean.

Usually, the larger the R?, the better the regression model fits your observations. However, thisis

not always true because some other factors not considered here.

Small R-squared values are not aways a problem, and high R-squared values are not necessarily
good!
Step 8: Putting it all Together

Set up the environment by importing the required libraries
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

#

Read data from file Fuel ConsumptionCo2.xIsx inro aworking data frame and plot it
df=pd.read_excel (r'Fuel ConsumptionCo2.xIsx")

#

#Y ou may print the entire data frame but just a sample should do
df.head()

#

Select some features for modeling, extract data for selected features. Plot them as well
data = df[["ENGINESIZE","CO2EMISSIONS"]]
plt.scatter(df["ENGINESIZE"] , df["CO2EMISSIONS'] , color="blue")
plt.xlabel ("Engine Size")

plt.ylabel ("Co2 Emissions”)

plt.show()

#

data = df[["ENGINESIZE","CO2EMISSIONS"]]

Generate training and testing data from the data frame

using 80% data for training

train = data[:(int((len(data)* 0.8)))]

test = data[(int((len(data)* 0.8))):]

#

Use sklearn package to model data

regr = linear_model.LinearRegression()

train_x = np.array(train[["ENGINESIZE"]])

train_y = np.array(train[["CO2EMISSIONS"]])
regr.fit(train_x.train_y)

#

The coefficient or the slope of the regression line

print ("Coefficient : ",regr.coef_)

#

The intercept of the regression line

print ("Intercept : ", regr.intercept_)

#

Plot the regression line

plt.scatter(train["ENGINESIZE"], train["CO2EMISSIONS"], color="blu€)
plt.plot(train_x, regr.coef_*train_x + regr.intercept_, '-r')
plt.xlabel ("Engine size")

plt.ylabel ("Emission™)

#
Make prediction using the relationship of engine size to Co2 emissions by regression
Create afunction that can be called everytime a prediction isto be made
def get_regression_predictions(input_features,intercept,slope):
predicted_values = input_features* slope + intercept
return predicted_values
#
Make a prediction for estimated emissions using atest engine size value
my_engine size=3.5
estimatd_emission =
get_regression_predictions(my_engine_size,regr.intercept_[0],regr.coef [0][0])
print ("Estimated Emission :",estimatd_emission)
#
Check the accuracy or reliability of prediction using statistical measures
from sklearn.metricsimport r2_score
test x = np.array(test[[ENGINESIZET])
test y = np.array(test[[CO2EMISSIONS]])
test y =regr.predict(test_x)
print("Mean absolute error: %.2f" % np.mean(np.absolute(test_ y - test_y)))
print("Mean sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2))
print("R2-score: %.2f" % r2_score(test vy, test y))

Y ou may copy and paste the entire coding shown above as a single run after you have save
automobile data used in this case study as an MS Excdl filein your working directory. Thishas
been described in Step 2 above.

Valuable Resource:
https://medium.com/towards-artificial-intelligence/machine-learning-algorithms-for-beginners-with-python-code-examples-ml-19c6afd60daa

10

