Machine Learning
Artificial Neural Networks
(ANN)

Theideaof artificial neura networks (ANN) arose from thoughts and insights about the human
mind.

Cultures throughout history have speculated about the nature of the brain, mind, heart, and soul.
Theinterest in thisarticle is not about the physiology of the brain but how the brain becomes a
mind, through mental processes. It isin the realm of psychology, or the human psyche, aterm
that appeared in Greek philosophy as early sixth century BCE.

Scientific studies have revealed that our brain consists of billions of cells called neurons. They
connect to form networks of abstract mental structures for acquiring and processing knowledge.
In the words of Swiss psychologist Jean Piaget (d. 1980), “ As experiences happen and new
information is presented, new schemas are devel oped and old schemas are changed or modified”.
The human mind is conceived to consist of schemas, a cognitive framework for study of the
human mind. A schemamay be about a specific person in terms of the person’s appearance or
personality traits such as preferences and behavior. A schemamay be amenta framework in
terms of how people behave in certain situations; it may be about an event, or a view about
oneself. Mental frameworks can facilitate our interactions with the world by accessing
previously stored experiences. They can also be inhibiting by filtering new information
according to our pre-existing beliefs and ideas.

From the models that depicted the human mind as consisting of neurons and connected networks,
and sub-networks in the form of schemas of human mind experiences, scientists began to explore
possihilities of building artificial neural networks. Humans receive input signals from the
generally known senses of hearing, sight, touch, smell and taste. Output responses are produced
through the senses such as speaking, writing reflecting speech and a variety of other forms.

From conceptual models of the human mind, scientists started efforts to build artificia neural
networks (ANN) to model human behavior. American neurophysiologist Warren Sturgis
McCulloch and mathematician Walter Pitts published a paper in 1943 modeling the working of
neurons in the form of a simple network with electrical circuits. Reinforcing this concept of

neurons and how they work was a book written by Donald Hebb. The Organization of

Behavior was written in 1949. It pointed out that neural pathways are strengthened each time that
they are used.

Building neural networks in hardware did not prove to be very successful in showing how the
human mind responds to inputs called stimuli. Perceptron built in hardware is among the widely
known ANN as an outcome of research by Cornell University neurobiologist Frank Rosenblatt. It
created euphoric feelings about the field of artificial intelligence. Perceptron proved to be very
limited in terms of its potential. A period of disillusionment about artificial intelligence and
ANN followed.

Opportunities for significant outcomes were opened up with the development of general-purpose
computersin the early 1950s. In 1956 the Dartmouth Summer Research Project on Artificia
Intelligence provided a boost to both artificial intelligence and neural networks. One of the
outcomes was to stimulate research in both the intelligent side, Al, asit is known throughout the
industry, and in the much lower level neural processing part of the brain.

As more and powerful computers were being built, the focus shifted to building specialized ANN
by using algorithms that modeled human experiences, and implemented in the form of computer
programs known as software. Today, the neural networks are finding practical applicationsin a
vast variety of areas. These networks can learn dynamically through training with vast amounts
of data. In ANNS, learning refersto the process of extracting structure—statistical regularities—
from input data, and encoding that structure into the parameters of the network.

With increasing uses of ANN, thereis also agrowing interest in what is called algorithmic bias.
An ANN models human activities and behavioral outcomes. Models are approximations of
reality. How the modeler views the reality can introduce biasin ANN learning. Thisiscalled
model bias. What datais used and how this datais organized in training an ANN can cause data
bias. And other forms of biases may also exist with potentially negative consequences in people-
related situations.

In the classification scheme for machine learning, ANN fall in the category of unsupervised
learning.

We receive signals through our senses called inputs, these inputs are processed mentally through
networks and subnetworks in the form of schemas from previous experiences, |eading to output

responses.

Consider an abstract model of an ANN shown in Figure 1.
Figure 1: Graphical Model of asimple Artificial Neural Network

In this model five inputs are entering the network through an input layer. Thereisasingle
hidden layer that applies some algorithmic process to produce outcomes. The input layer
transforms inputs into data for processing, and the output layer transforms the data entering into
it asinputsinto meaningful output responses. In practical situations, an ANN would have
severa hidden experience building layers.

Another more meaningful example of aneura networks, taken from
https://medium.com/fintechexplai ned/neural -networks-a-solid-practical -qui de-9f343594b02a

and https://missinglink.ai/guides/neural -network-concepts/neural -network-bi as-bi as-neuron-

overfitting-underfitting is shown in Figure 2. Additional relevant terms are synapse and weights.

In brain physiology, a synapse, also called neuronal junction, is the site of transmission of

electric nerve impul ses between two nerve cells (neurons) or between aneuron and a gland or

muscle cell (effector). A synaptic connection between a neuron and amuscle cell iscalled a
neuromuscular junction. A weight is a parameter within aneural network that transforms input
data within the network's hidden layers. A neural network is a series of nodes, or neurons. Within
each node is a set of inputs, weight, and a bias value. As an input enters the node, it gets
multiplied by aweight value and the resulting output is either observed, or passed to the next
layer in the neural network. Often the weights of a neural network are contained within the
hidden layers of the network. Bias serves two functions within the neura network — as a specific
neuron type, called Bias may be a specific neuron type or a statistical measure used in training
of an ANN mode!.

Figure 2: ANN Models Example with Some Additional Information

The bias neuron is a special neuron added to each layer in the neura network, which simply
stores avalue of 1. This makes it possible to move or “translate” the activation function left or
right on the graph. Without a bias neuron, each neuron takes the input and multipliesit by a
weight, because with nothing else added to the equation which could be problem, if the input is
zero.

Although neural networks can work without bias neurons, in reality, they are ailmost always
added, and their weights are estimated as part of the overall model.

Uses of ANN are growing in aimost every area of human activity in business, government,

manufacturing and service sectors. Examples of some general areas of ANN uses are:

Quality assurance, performance monitoring and control of systems.

Surveillance and response

Aircraft component fault detection and simulations

Electronic chips layout, failure vision and analysis, modeling

Chemical process modeling and control

Robotics

Talent search, hiring efficiency, employee retention, work satisfaction.

Matching children with foster care givers

Diagnostics and predictive analysis of medical datafor gaining insightsin medical care.

Skin tracking in dermatology

Bank credit card attrition, loans application eva uation, delinquencies, risks and frauds.

Counter terrorism, facia recognition and extraction of features, target tracking.

Adaptive learning in education, performance modeling, personality profiling.

Stock trading advisory systems

Transportation logistics.

The following table provides examples of some specific applications.
Tablel: Some Specific Examples of ANN Application and ANN Processes

Application

ANN Process

Classification of data

Predict presence of one or more objects based on a set of data,

Anomaly detection Based on transactions by an entity, find if agiven transaction is
fraudul ent.
Speech recognition Based on records of speaking from severa sources, recognize who

is the speaker in agiven case.

Audio generation

Given theinputs as audio files, it can generate new music based on
various factors like genre, singer, and others.

Time seriesanaysis

An ANN can be trained using stock market data and then used to
predict the stock prices.

Character recognition

An ANN can be trained using handwriting data to detect
handwritten characters

Machine trandation

Using dictionary and vocabulary data, an ANN can betrained to
translate one language into another language.

Image processing After training with data on images, an ANN recognize and extract
features and match images.

In any application of an ANN, there are two important considerations. We must have large
volumes of data as prior experiences and this data must be representative of the population for a
given application.

In the example that follows, we will start with asimpler form of ANN. It fallsin the category of

asupervised learning systems. It consists of a number of simple elements, called neurons or

perceptron. Each neuron can make simple decisions, and feeds those decisions to other
neurons, organized in interconnected layers. Together, the neural network can emulate almost
any function, and answer practically any question, given enough training samples and
computing power.

Before working on the details of the example for implantation in Python, there are some other

ANN guiding concepts that require basic understanding, such as the following.

A simpler form of ANN is known as a“shallow” neural network (SNN). It has only three

layers of neurons:

e Aninput layer that accepts the independent variables or inputs of the model with the goal of
making a decision or prediction about the data. Inputs to a neural network are typically a
set of real values; each value isfed into one of the neuronsin the input layer.

e Onehidden layer

« Anoutput layer that generates responses called predictions. Neural networks generate their
predictionsin the form of a set of real values or Boolean decisions. Each output valueis
generated by one of the neuronsin the output layer.

Each neuron accepts part of the input and passes it through the activation function. One of the
commonly known activation functionsis a sigmoid. An activation functions hel ps generate
output values within an acceptable range, and their non-linear form is crucial in achieving that
goal. Each neuron is assigned a numeric weight. The weights, together with the activation
function, define each neuron’s output. Neural networks are trained by fine-tuning weights, to
discover the optimal set of weights that generates the most accurate prediction.

A Forward pass through the network takes the inputs, passes them through the network and
allows each neuron to react to afraction of the input. Neurons generate their outputs and pass

them on to the next layer, until eventually the network generates an output.

An Error Function defines how far the actual output of the current model is from the correct
output. When training the model, the objective isto minimize the error function and bring
output as close as possible to the correct value.

A Backward Passis performed in order to discover the optimal weights for the neurons,
moving back from the network’s prediction to the neurons that generated that prediction. This
is called backpropagation. Backpropagation tracks the derivatives of the activation functions
in each successive neuron, to find weights that brings the loss function to a minimum, which
will generate the best prediction. Thisis amathematical process called gradient descent.
When training neural networks, like in other machine learning techniques, we try to balance
between bias and variance.

Bias measures how well the model fits the training set—able to correctly predict the known
outputs of the training examples.

Bias neuron has avaue of 1. However, the weight assigned to it israndom at first, and model
optimizesit for our target output. Generally, we keep the learning rate as low as possible so that
we can achieve aminimum error rate. Bias neuron allows moving the activation function to left,
right, up or down. It preventsinput of zero when multiplied by a weight to produce O as
outcome. Activation function movements are required to generating the required output
response from the network.

Variance measures how well the model works with unknown inputs that were not available
during training. Another meaning of biasisa*“bias neuron” which isused in every layer of the
neural network. The bias neuron holds the number 1, and makes it possible to move the
activation function up, down, left and right on the number graph.

A perceptron isabinary classification algorithm modeled after the functioning of the human
brain—it was intended to emulate the neuron. The perceptron, while it has a simple structure,
has the ability to learn and solve very complex problems.

Gradient Descent isamachine learning agorithm that operates iteratively to find the optimal
valuesfor its parameters. It takes into account, user-defined learning rate, and initial parameter
values.

One cycle through the training data set is called an Epoch. Usualy, training a neural network

takes more than afew epochs. In other words, if we feed aneural network the training data for

more than one epoch in different patterns, we hope for a better generalization when given anew
"unseen” input (test data). The term epoch is often mixed up with an iteration. Iterationsisthe
number of batches or steps through partitioned packets of the training data, needed to complete
one epoch. Heuristically, one motivation is that (especially for large but finite training sets) it
gives the network a chance to see the previous data to readjust the model parameters so that the
model is not biased towards the last few data points during training.

A training set is generally alarge volume of example data, experience, used to train an ANN.
A Deep Neural Network (DNN) has asimilar structure, but it has two or more “hidden layers”
of neurons that process inputs. While shallow neural networks are able to tackle complex
problems, deep learning networks are more accurate, and improve in accuracy as more neuron
layers are added. Additional layers are useful up to alimit of 9-10, after which their predictive
power starts to decline. Today most neural network models and implementations use a deep

network of between 3-10 neuron layers.

Example 1.

Let us now consider avery simple example but with practical flavor, from an article dated June
29, 2020 authored by Pratik Shukla, Roberto Iriondo:

https://medium.com/towards-artificial -intelligence/buil ding-neural -networks-from-scratch-
with-python-code-and-math-in-detail-1-536fae5d 7bbf

The situation is that of making a diagnosis from a sample of symptoms shown in Table 2.

Table 2: Commonly Mentioned Symptoms and Diagnosis for Covid-19 Cases

Person Smell Loss | Weight Loss | Runny Nose Body Pain Diagnosis, y
(i1) (i2) (i3) (i4) (1: positive)
1 0 0 1 1

OINO OB WIN|F-
[ellellel] llellel)
[ellellel] Jl Jllelle]
el gdlellellile]
Ok |k OOk |O
[ellell i Jlellel]

This simple example isintended to build atoy ANN and play with it in order to gain practical
insights for building meaningful applications of ANN. Data features are expressed simply as0
for an absence of a symptom and 1 for presence of a symptom.

The form in which the data is shown here is called a truth table. There are four cases where the
diagnosisis positive.

This situation can be modeled as a shallow ANN without a hidden layer as shown in Figure 3.

Figure 3: Model of a Shallow Neural Network (Perceptron)

The initial weights assigned to inputs are arbitrary and get adjusted during the training process.
In the simple situation at hand, we can find some clues for assignment of weights from simply
avisual inspection. For example, Loss of Smell (i1) is present in 75% of the positive
diagnosis. The next influencer is Body Pain (i4) causing positive diagnosis in 50% of the cases,

while Weight Loss (i2) and Runny nose (i3) appear to cause positive diagnosisin only 25% of

the cases. Y ou will seethis evidence in the final optimized values of weights printed after the
training process.

Similar considerations may relevant to assigning the values to bias neuron and its weight. The
output values are what is expected from the network.

The implementation of this model in Python language is described in steps, with the coding

appearing in boxes, and explanations before and after a box.

Step 1: Importing Packages as Need

import numpy as np

Numpy is a package containing pre-built methods for applications using numerical

computations.

Step 2: Load and Display Input Data

input_features = np.array([[1,0,0,1],[1,0,0,0],[0,0,1,1],
[0,1,0,00,[1,1,0,0],[0,0,1,1],

[0,0,0,1],[0,0,1,01])

print (input_features.shape)

print (input_features)

(8,4)
[[1001]
[1000]
[0011]
[0100]
[1100]
[0011]
[0001]
[0010]]

Values of input feature are created as binary numbers shown in the truth table, resulting output.

The shape of input datais 8 rows data points and 4 columns of values for the four features.

Step 3. Load and Display Expected Output Responses

target_output = np.array([[1,1,0,0,1,1,0,0]])
target_output = target_output.reshape(8,1)
print(target_output.shape)

10

| print (target_output)

(8, 1)
[[1]
[1]
[0
[0
[1]
[1]
[0
[0

Dataisloaded and shaped into a column vector values to columns of input data.

Step 4: Assign and Display weights for Input Data

weights = np.array([[0.1],[0.2],[0.3],[0.4]])
print(weights.shape)
print (weights)# Bias weight :

4,1

[[0.1]

[0.2]

[0.3]

[0.4]]

Step 5: Applying Activation Function for constraining the values between 0 and 1.

Each input has an associated weight (w), which is assigned on the basis of its relative importance
to other inputs. The node applies afunction f (defined below) to the weighted sum of its inputs as
shown in Figure 3:

The resulting output can be described as:

Output, y=f(b +il*wl + i2*w2+ i3*w3 + i4*w4) = f(b+ Zii*wi) where b isabiaswith an
assigned weight.

The function is non-linear and is called an activation function. Commonly used example,

particularly for this situation isa Sigmoid, with avisua of its operation in Figure 4.

Figure 4: Operational View of Sigmoid Activation function

11

The mathematical representation of the Sigmoid function is:

f(x)= 1/(1+exp(-x)) where e is amathematical constant, known as Euler’s number,
2.718281828459045..., approximated as 2.71828.

Note that for x=0, f(0)= 1/(1+np.exp(-0)) leading to 1/(1+1)=.5. At x=-10, f(x)=.00000454 and at

x=10, f(x)=.99999955,

The coding for Sigmoid function and its graphical display is shown below.

import numpy as np
import matplotlib.pyplot as plt
input=np.linspace(-10,10,100)
def sigmoid(x):

return 1/(1+np.exp(-x))
output=sigmoid(input)
plt.plot(input,output)
plt.xlabel ("Input")
plt.ylabel ("Output)
plt.title(" Sigmoid Function ")

12

Step 6: Bias and Learning Assignments

bias=0.3
Ir=0.05

Biasis a parameter in the neural network which is used to adjust the output along with the
weighted sum of the inputs to the neuron. Therefore, biasis a constant which helps the model in
away that it can fit best for the given data.

The learning rate is a configurable hyperparameter used in the training of neura networks. It has
asmall positive value, often in the range between 0.1 and 1.0. The learning rate controls how

quickly the model is adapted to the problem at hand.

Step 6: Defining Sigmoid Function and its Derivative (Rate of Change)

def sgmoid(x):

return 1/(1+np.exp(-x))
Derivative of sgmoid function :
def sgmoid_der(x):

return sigmoid(x)* (1-sigmoid(x))

Step 7: Executing Learning Epochs

13

for epoch in range(10000):
inputs = input_features
#Feedforward input :
pred_in = np.dot(inputs, weights) + bias
#Feedforward output :
pred_out = Ssgmoid(pred_in)
#Backpropogation
#Calculating error
error = pred_out - target_output
#Going with the formula:
X = error.sum()
print(x)
#Cdculating derivative:
dcost_dpred = error
dpred_dz = sgmoid_der(pred_out)
#Multiplying individud derivatives:
Z_delta=dcost_dpred * dpred_dz
#Multiplying with the 3rd individua derivative:
inputs = input_features.T
weights-=Ir * np.dot(inputs, z_delta)
#Updating the biasweight value :
foriinz ddta

bias-=Ir* i

print("Error Sum Squares’, x)
print("Number of Epochs Completed =" epoch)

Allowed to take as many as 10,000 learning runs.
Error Sum Squares 0.0032273154199536913
Number of Epochs Completed = 9999

Appears to be agood fit.

Step 8: Display Final Values of Weights and Bias

print(weights)
print("\n\n")
print(bias)

[[12.23844365]
[0.98735984]
[3.78293481]
[3.79338689]]

14

[-7.62902211]

Make a not of these weights and bias after ANN has gone through training. They have all been
adjusted during the training.

Step 8: Find Predicted Response (Diagnosis) Based on Test [nputs (Symjptoms)

First Test:

Select Input Vaues

single _point = np.array([1,0,0,1])

resultl = np.dot(single_point, weights) + bias
result2 = sigmoid(resultl)

print(result2)

print (weights)

print("\n\n")

print(bias)

[0.99915866]

[[12.23844365]
[0.98735984]
[3.78293481]
[3.79338689]]

[-7.62902211]
The diagnosis for symptoms 1,0,0,1 is .999 which is 1 for all practical purposes. This value is the same as

in the given data shown in Table 2, first row of values. It says that the diagnosis is positive if Loss of

Smell and Body Pain are both present.

print (weights)
print("\n\n")
print(bias)

[[10.1634992]
[0.45744949]
[2.97441782]
[2.9938138]]

Second Test:

| #Taking inputs :

15

single_point = np.array([0,0,1,0])

#1st step :

resultl = np.dot(single_point, weights) + bias
#2nd step :

result2 = sigmoid(resultl)

#Print final result

print(result2)

print (weights)

print("\n\n")

print(bias)

[0.02091632]

[[12.23844365]
[0.98735984]
[3.78293481]
[3.79338689]]

The diagnosis for symptoms 0,0,1,0 is 0.0209 which is 0 for all practical purposes. This value is the same
as in the given data shown in Table 2, last row of values. It says that the diagnosis is negative if there is

only Runny Nose.

Third Test:

#Taking inputs :

single point = np.array([1,0,1,0])#1st step :

resultl = np.dot(single_point, weights) + bias#2nd step :
result2 = sigmoid(resultl)#Print final result
print(result2)

[0.99977346]

[[12.23844365]
[0.98735984]
[3.78293481]

16

[3.79338689]]

[-7.62902211]

The diagnosis for symptoms 1,0,1,0 is.99977 which is 1 for all practical purposes. It says that

the diagnosisis positive if Loss of Smell and Runny Nose are both present. This row of

symptomsis not in the data shown in Table 2. With four binary variablesil, i2, i3, and i4, there

are sixteen possible observations or rows. The provided data covers the sample space only

partially.

Complete Listing of Python Coding:
Import required libraries:

import numpy as np

#

input_features = np.array([[1,0,0,1],[1,0,0,0],[0,0,1,1],

[0,1,0,0],[1,1,0,01,[0,0,1,1],
[0,0,0,1],[0,0,1,01])
print (input_features.shape)
print (input_features)
#
target_output = np.array([[1,1,0,0,1,1,0,0]])
target_output = target_output.reshape(8,1)
print(target_output.shape)
print (target_output)
weights = np.array([[0.1],[0.2],[0.3],[0.4]])
print(weights.shape)
print (weights)
#
bias=0.3
Ir=0.05
#
def sgmoid(x):
return 1/(1+np.exp(-x))
#
def sgmoid_der(x):
return sigmoid(x)* (1-sigmoid(x))
print("Before Starting Epocs’)
#

Running our code 10000 times
for epoch in range(10000):
inputs = input_features
#Feedforward input :
pred_in = np.dot(inputs, weights) + bias

17

#Feedforward output :
pred_out = sigmoid(pred_in)
#Backpropogation
#Calculating error
error = pred_out - target_output
#Going with the formula:
X = error.sum()
print(x)
#Cadculating derivative :
dcost_dpred = error
dpred_dz = sigmoid_der(pred_out)
#Multiplying individual derivatives:
Z delta=dcost_dpred * dpred dz
#Multiplying with the 3rd individua derivative:
inputs = input_features.T
weights -= Ir * np.dot(inputs, z_delta)
#Updating the bias weight value :
foriinz_deta
bias-=Ir* i
#
print("Error Sum Squares=", x)
#Printing fina weights:
print (weights)
print("\n\n")
print(bias)
Find predicted response
#Select inputs values for first test
single_point = np.array([1,0,0,1])

resultl = np.dot(single_point, weights) + bias#2nd step :

result2 = sigmoid(resultl)#Print fina result
print(result2)

print (weights)

print("\n\n")

print(bias)

#Select input values for second test
single_point = np.array([0,0,1,0])

resultl = np.dot(single_point, weights) + bias
result2 = sigmoid(resultl)

print(result2)

print (weights)

print("\n\n")

print(bias)

#Select input values for third test
single_point = np.array([1,0,1,0])#1st step :

resultl = np.dot(single_point, weights) + bias#2nd step :

result2 = sigmoid(resultl)#Print final result

18

print(result2)
print (weights)
print("\n\n")
print(bias)

More Sources:

https://www.smartsheet.com/neural -network-applications

http://www?2.psych.utoronto.ca/users/reingol d/courses/ai/cache/neural4.html

Biological Neuron Model, Wikipedia, https://en.wikipedia.org/wiki/Biological neuron_model

Logic Gate, Wikipedia, https://en.wikipediaorg/wiki/Logic_gate

Example 2

This example goes further by including a hidden layer in the network model as shown in Figure 5

Figure 5: Graphical Modd of an Artificial Neural Network with aHidden Layer of Neurons

19

In this model, there are three input layer neurons x1, x2, x3, four hidden, four hidden layer neurons h1,

h2, h3, and h2, and finally an output layer neuron, y. The data chosen for implementation of this model

is an abstract situation, called a 3-input Exclusive OR (XOR) gate as shown in Figure 6.

Figure 6: a 3-input XOR with showing two 2-input XORs to form a 3-input XOR

Using only AND, OR and inverter gates to implement the above Boolean
equation, how many gates are needed? Draw the logic diagram.
Compare the savings of a single XOR gate implementation with the

circuit you just drew.

Some practical applications of XOR gates are pseudo-random number generation, correlation of

bit patterns, and bit sequence detection.

The truth table for a 3-input XOR is shown in Figure 7.

Figure 7: XOR Truth Table with inputs A, B, C, and output shown as X, corresponding to Figure 7

20

In the following Python coding details, the inputs are named x1, x2, and x3. The 8-rows, three
columns matrix is denoted as X= [x1, X2, x3]. The output is denoted as y, an 8-rows, 1 column
array. Thisexampleis described by John Shovic and Alan Simpson in their Book, Python All-
In-One, published by John Wiley and Sons, NJ, 2019. Some data values and coding has been

modified for consistency.

Stepl: Load Numerical M ethods numpy package nick named as np

| import numpy as np

Step 2: Set up Input Data and Display for Verification.

X =input of our 3input XOR gate

set up the inputs of the neural network

X = np.array(([0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,00,[1,1,1]), dtype=float)
#y = Expected output of neura network

y= np.array(([1].[1].[0].[0].[0].[0].[O].[1]), dtype=float)

21

[1]

[0]

[1]

[0]

The input matrix X of eight rows and 4 columns. The expected array has 8 rows and one
column.

Step 3: Set Targets and Weights

#what value we want to predict

xPredicted = np.array(([0,0,1]), dtype=float)
print("xPredicted", xPredicted)

X = X/np.amax(X, axis=0) # maximum of X input array
#maximum of xPredicted (our input data for the prediction).
xPredicted = xPredicted/np.amax(xPredicted, axis=0)
print("xPredicted Maximum", xPredicted)

xPredicted [0. 0. 1.]

xPredicted Maximum [0. 0. 1.]

xPredicted [0. 0. 1.]

Step 4: Set Up acsv, called lossFile, for storing Sum Square Errors

| lossFile = open(" SumSguaredL ossList.csv", "w"

Step 5: Create a Class Called Neural_Network and Methods to be associated with this class.

class Neura _Network(object):
def __init__ (self):
self.inputLayerSize= 3 # X1,X2,X3
self.outputLayerSize= 1#Y1
self.hiddenLayerSize= 4 # Size of the hidden layer
self.W1 = np.random.randn(self.inputLayerSize,self.hiddenLayerSize)
self.W2 = np.random.randn(self.hiddenL ayerSize,self.outputL ayerSize)
#
def activationSigmoid(self, s):
return 1/(1+np.exp(-s))
#
def activationSigmoidDer(sdlf, s):
returns* (1-s)
#
def feedForward(self, X):
self.z = np.dot(X, self.W1)
self.z2 = self.activationSigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
o0 = self.activationSigmoid(self.z3)
return o

22

#
def backwardPropagate(self, X, y, 0):
self.o error=y -0
self.o_delta= self.o_error* self.activationSigmoidDer(0)
self.z2_error = self.o_delta.dot(self.W2.T)
self.z2_delta= salf.z2_error* self.activationSigmoidDer(self.z2)
self. W1 += X.T.dot(self.z2_delta)
self. W2 += self.z2.T.dot(self.0_delta)

def trainNetwork(sdlf, X, y):
o= self.feedForward(X)
self.backwardPropagate(X, v, 0)
#
def saveSumSquaredL ossList(self,i,error):
lossFile.write(str(i)+","+str(error.tolist())+\n’)

def saveWeights(self):
np.savetxt("weightsL ayerl.txt", self. W1, fmt="%s")
np.savetxt("weightsL ayer2.txt", self. W2, fmt="%s")

def predictOutput(self):
print ("Predicted XOR output data based on trained weights: ")
print ("Expected (X1-X3): \n" + str(xPredicted))
print ("Output (Y 1): \n" + str(self.feedForward(xPredicted)))

Creating a class and defining its methods gives us a number of advantages. When instances are
created, they are automatically encapsulated with its associated methods. Fragments of code that
are likely to be used many times are defined once as afunction with aname. These fragments
can be executed by simply acall to the function. If the details of internal operationsin afunction
get modified, the calls can be made as before without being concerned about those details aslong
as the function objective remains the same.

Step 6: Create an instance of the Neural Network class. It is now aworking object

myNeuralNetwork = Neural _Network()
myNeuralNetwork.inputLayerSize
myNeural Network.ouputL ayerSize
myNeuralNetwork.hiddenLayerSize
myNeuralNetwork.W1
myNeuralNetwork.W?2

myNeuralNetwork.inputLayerSize
3

myNeural Network.outputL ayerSize
1

23

myNeuralNetwork.hiddenLayerSize
4
myNeuralNetwork.W1

array([[1.03205222, -1.01923292, -0.94697756, 0.16023102],
[-0.29517126, -0.37420777, -2.10696714, -1.29781689],
[2.00248949, 0.01310485, -0.62581832, -0.67745429]])
myNeuralNetwork.W2
array([[1.08758167],
[-1.17630573],
[-0.52214085],

Step 7: Network Training Epochs

myNeuralNetwork = Neural_Network()
trainingEpochs = 10000
for i in range(trainingEpochs):

print ("Epoch * " + str(i) + "\n")

print ("Network Input : \n" + str(X))

myNeural Network.saveSumSquaredL ossList(i,L 0ss)
print ("Sum Squared Loss. \n" + str(L0ss))

print ("\n")

myNeural Network.trainNetwork(X, y)

print ("Expected Output of XOR Gate Neural Network: \n" + str(y))
print ("XOR Gate Actual Output: \n"+ str(myNeuralNetwork.feedForward(X)))
Loss = np.mean(np.square(y - myNeura Network.feedForward(X)))

Final results after the epochs:
Epoch * 9999

Network Input :
[[0.0.0]
[0.0.1]

1]
Expected Output of XOR Gate Neural Network:

[[0]

24

[1]

[1]

[0]

[1]

[0]

[0]

[1.]]

XOR Gate Actua Outpult:
[[0.02364826]
[0.98423801]
[0.98484896]
[0.00801493]
[0.98487698]
[0.00922088]
[0.01546563]
[0.99845478]]

Sum Squared Loss:
0.00020709719265751375

The model performance appears to be very good, if welook at the expected output versus the

actual output. Let uslook at the side by side as shown in Table 3.

Table 3: Expected versus Actual Output of the Neural Network Model

Expected Output

Actual Output

Rounded Values of Output

0.02364826

0.98423801

0.98484896

0.00801493

0.98487698

0.00922088

0.01546563

= [OOR ORIk][O

0.99845478

Im OOk |O|k (RO

Sum Squared Loss value provides further confirmation of this out. The expected versus actual
output values are very closes to each other. Thereis hardly any difference.

Step 8: Post Epoch Results

myNeuralNetwork.saveWeights()
myNeural Network.predictOutput()

Predicted XOR output data based on trained weights:

Expected (X1-X3):
[0.0.1]

Output (Y 1):
[0.98423891]

25

The complete listing of the Python code for this example:
import numpy as np

X =input of our 3 input XOR gate
set up the inputs of the neural network

X = np.array(([0,0,0],[0,0,1],[0,1,01,[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]), dtype=Float)

print(X)
#y = output of neural network
y=np.array(([0],[1],[1],[0],[1],[O],[O].[1]), dtype=float)

print(y)
#

#what value we want to predict

xPredicted = np.array(([0,0,1]), dtype=float)
print("xPredicted", xPredicted)

X = X/np.amax(X, axis=0) # maximum of X input array
#maximum of xPredicted (our input data for the prediction).
xPredicted = xPredicted/np.amax(xPredicted, axis=0)

#

#set up our Lossfile for graphing

lossFile = open(" SumSguaredL ossList.csv”, "w"

class Neural_Network(object):
def __init_ (self):
self.inputLayerSize= 3# X1,X2,X3
#
self.outputLayerSize= 1
#
self.hiddenLayerSize= 4 # Size of the hidden layer
self.W1 = np.random.randn(self.inputLayerSize,self.hiddenLayerSize)
self.W2 = np.random.randn(self.hiddenL ayerSize,self.outputL ayerSize)
#
def activationSigmoid(self, s):
return 1/(1+np.exp(-9))
#
def activationSigmoidDer(sdf, s):
returns* (1-9)
#
def feedForward(self, X):
self.z = np.dot(X, self.W1)
self.z2 = self.activationSigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
o0 = self.activationSigmoid(sealf.z3)
return o

26

def backwardPropagate(self, X, y, 0):
self.o error=y -0
self.o_delta= self.o_error* self.activationSigmoidDer(0)
self.z2_error = self.o_delta.dot(self. W2.T)
self.z2_delta= self.z2_error* self.activationSigmoidDer(self.z2)
self. W1 += X.T.dot(self.z2_delta)
self. W2 += sdlf.z2.T.dot(self.o_delta)

def trainNetwork(self, X, y):
o= self.feedForward(X)
self.backwardPropagate(X, vy, 0)
#
def saveSumSquaredL ossList(self,i,error):
lossFilewrite(str(i)+","+str(error.tolist())+\n’)

def saveWeights(self):
np.savetxt("weightsLayerl.txt", self. W1, fmt="%s")
np.savetxt("welghtsLayer2.txt", self. W2, fmt="%s")

def predictOutput(self):
print ("Predicted XOR output data based on trained weights: ")
print ("Expected (X1-X3): \n" + str(xPredicted))
print ("Output (Y 1): \n" + str(self.feedForward(xPredicted)))

myNeuralNetwork = Neural_Network()

trainingEpochs = 10000

for i in range(trainingEpochs):
print ("Epoch * " + str(i) + "\n")
print ("Network Input : \n" + str(X))
print ("Expected Output of XOR Gate Neural Network: \n" + str(y))
print ("XOR Gate Actual Output: \n"+ str(myNeural Network.feedForward(X)))
Loss = np.mean(np.square(y - myNeural Network.feedForward(X)))
myNeura Network.saveSumSquaredL ossList(i,L 0ss)
print ("Sum Squared Loss: \n" + str(Loss))
print ("\n")
myNeural Network.trainNetwork(X, y)

myNeuralNetwork.saveWeights()
myNeural Network.predictOutput()

27

