Algebra and Simultaneous Equations Story

The name algebrais derived from the title of the ground breaking book, Kitab al-mukhtasar fi
hisab aljabr wa’l-mugabala, written by a Muslim scholar Muhammad ibn Musa a-Khwarizmi,
in 825 AD. A systematic sudy of methods for solving quadrati c equations constituted a central
concern of Mudim mathematicians, and hence thar important contributions to the progress of
dgebracthinking. A nolesscentrd contribution isrelated to the Mudim reception and
transmission of ideas related to the Hindu system of numeration, to which they also added
fundamenta components lacking so far, such asdecimd fractions.

Al-Khwarizmi's work embodies much of what is central to Mudim contributionsin thisfield.
He declared his book to be intended as one of practical value, yet this definition hardly gpplies
to what one findsthere. In thefirst part of hisbook Al-Khwarizmi presented the proceduresfor
0lving Sx types of equaions squares equa roots, squares equa numbers, roots equal numbers,
squares and roots equa numbers, squares and numbers equa roots, and roots and numbers equa
asguare. (In modern notation: ax? = bx, ax? = ¢, bx=¢, ax® + bx=c, ax* + c = bx, and bx + c = ax®,
respectively.) Neither zero nor the negative numbers gppear here aslegitimate coefficients or
solutions to equations. Moreover, we find nothing like symbolic representation or abstract
symbol manipulation and, in fact in the problems, even the quantities are written in words rather
than in symbols. All procedures are described verbdly. Thisisnicdy illustrated by the following,
typicd example:

What must be the squar e which, when increased by ten of its own roots, amounts

to thirty- nine? The solution isthis: You halve the number of roots, which in the

present instance yields five. Thisyou multiply by itsdlf; the product is twenty-

five. Add thisto thirty-nine; the sumis sixty-four. Now take theroot of thiswhich

iseight, and subtract formit half the number of the roots which isfive; the

remainder isthree. Thisistheroot of the square which you sought for.

In the second part, d-Khwarizmi uses propositions taken from book 11 of Euclid’'s Elementsin
order to provide geometrica judtification for his procedures. Asremarked above, in thar origina
context those were purely geometrica texts. Here they are directly connected, for thefirst time,
to the question of solving quadratic equations. Thisisahdlmark of the Mudims gpproach to
solving equations: systematize dll cases and provide ageometric judtification, based on Greek
sources. In the X1 century, the Persian mathematician, astronomer, and poet Omar

Khayyam showed how to express roots of cubic equations by line segments obtained by
intersecting conic sections. Omar Khayyam agpplied Greek knowledge on conic sectionsto
questionsinvolving cubic variables.

The use of Greek-style, geometricd argumentsin this context dso led to agradud loosening of
certain basic, traditional constraints. Thus, Mudim mathematicians alowed, and indeed
encouraged a variance with the Greek tradition, the unrestricted combination of commensurable
and incommensurable magnitudes within the same framework, aswell asthe smultaneous

mani pul ations of magnitudes of different dimensons as part of the solution of an individud
problem. Thus, inthework of Abu Kamil the solution of aquadratic equation isa*number”,
rather than a“line segment” or an “area’. Combined with the use of the decimd system, this
gpproach was fundamentd in devel oping amore abstract and generd conception of number,



which eventualy became essentid for the creation of afull-fledged abstract idea of an
equation.

The beginning of algebra goes back to the time of ancient Egypt and Babylon, where people
learned to solve linear (ax = b) and quadratic (ax2 + bx = c) equations, as well as indeterminate
equations such as x2 + y2 = z2, whereby several unknowns areinvolved. The ancient
Babylonians solved arbitrary quadratic equations by essentially the same procedures taught
today. They aso could solve some indeterminate equations.

The Alexandrian mathematicians Hero of Alexandria and Diophantus continued the traditions of
Egypt and Babylon, but Diophantus's book Arithmeticais on a much higher level and gives
many surprising solutions to difficult indeterminate equations.

Ancient civilizations wrote out algebraic expressions using only occasional abbreviations, but by
medieval times Muslim mathematicians were able to talk about arbitrarily high powers of the
unknown x, and work out the basic algebra of polynomials (without yet using modern
symbolism). Thisincluded the ability to multiply, divide, and find square roots of polynomials as
well as a knowledge of the binomial theorem.

Indian mathemati cians such as Brahmaguptaand Bhaskarain 6-12th deve oped non-symbalic, yet
very precise, procedures for solving equations of degree one and two, and equations on morethan
onevaiade However, themain contribution of Hindu mathematicsto adgebra concernsthe
daboration of thedecimd, positiond numerd system, which dosdy accompanied the devd opment
of symbadlic dgebrain renaissance Europe. By the ninth century the Hindus certainly had afull-
fledged decimdl, postiond system, yet many of its centrd ideas had been transmitted well
before that to China and the Idam. Hindu arithmetic, moreover, devel oped cons stent and correct
satsof rulesfor operating with podtive and negative numbers, and zero was treated as a number
like any other, even in problematic contexts such asdivison. It would dill teke severd hundreds of
years before European mathematics would be in apogtion to fully integrate idees of thiskind
into the developing discipline of agebra

Chinese mathematicians during the period pardld to the European middle ages devel oped

their own methods for solving quadratic equations by "redicas’ (i.e.: displaying the solutions
as expression involving the coefficients, the four basi c algebraic operations, and roots of
them) and for classifying such solutions. They aso attempted to solve higher degree equations
inthissamedirection, yet unsuccessfully. Thus, they wereled to goproximation methods of high
accuracy, such as developed by Y ang Hui in the twefth century AD. The advantagesin
cdculaions afforded by their expertise with the abacus may hdp explain why Chinese
mathemati cians followed more intensvdy this gpproach rather than make additiond progress
with radica methods.

Early in the 16th century, the Italian mathematicians Scipione del Ferro, Niccolo Tartaglia,

and Gerolamo Cardano solved the general cubic equation in terms of the constants appearing in
the equation. Cardano's pupil, Ludovico Ferrari, soon found an exact solution to equations of the
fourth degree (see quartic equation), and as aresult, mathematicians for the next several
centuriestried to find aformulafor the roots of equations of degree five, or higher. Early in the



19th century, however, the Norwegian mathematician Niels Abel and the French
mathematician Evariste Galoisproved that no such formula exists.

An important development in algebrain the 16th century was the introduction of symbols for the
unknown and for algebraic powers and operations. As aresult of this development, Book 111

of Lagéometrie (1637), written by the French philosopher and mathematician René Descartes,
looks much like a modern a gebratext. Descartes's most significant contribution to mathematics,
however, was his discovery of analytic geometry, which reduces the solution of geometric
problems to the solution of agebraic ones. His geometry text also contained the essentials of a
course on the theory of equations, including his so-called rule of signs for counting the number
of what Descartes called the "true" (positive) and "false" (negative) roots of an equation. Work
continued through the 18th century on the theory of equations, but not until 1799 was the proof
published, by the German mathematician Carl Friedrich Gauss, showing that every polynomial
equation has at |east one root in the complex plane.

By the time of Gauss, algebra had entered its modern phase. Attention shifted from

solving polynomial equations to studying the structure of abstract mathematical systems whose
axioms were based on the behaviour of mathematical objects, such as complex numbers, that
mathematicians encountered when studying polynomial equations. Two examples of such
systems are algebraic groups and quaternions, which share some of the properties of number
systems but also depart from them in important ways. Groups began as systems of permutations
and combinations of roots of polynomials, but they became one of the chief unifying concepts of
19th-century mathematics. Important contributions to their study were made by the French
mathematicians Galois and Augustin Cauchy, the British mathematician Arthur Cayley, and the
Norwegian mathematicians Niels Abel and Sophus Lie. Quaternions were discovered by British
mathematician and astronomer William Rowan Hamilton, who extended the arithmetic of
complex numbers to quaternions while complex numbers are of the form a + bi, quaternions are
of theforma+ bi + ¢j + dk.

Immediately after Hamilton's discovery, the German mathematician Hermann Grassmann began
investigating vectors. Despite its abstract character, American physicist J. W. Gibbs recognized
in vector algebra a system of great utility for physicists, just as Hamilton had recognized the
usefulness of quaternions. The widespread influence of this abstract approach led George

Boole to write The Laws of Thought (1854), an algebraic treatment of basic logic. Since that
time, modern algebra—al so called abstract algebra—has continued to develop. Important new
results have been discovered, and the subject has found applicationsin al branches of
mathematics and in many of the sciences as well.

The dlassicd discipline of dgebragartsits actuad deve opment after the consolidation of theidea
of an equation in Viete€ swork. At the sametime, during this same period of time, new mathe-
matica objects gradudly arose (groups, rings, fidds, etc.), that eventudly cameto replacethe
sudy of polynomids as the main subject matter of agebraand became the new focus of interest
of thediscipline,



The cregtion of what cameto be known as andytic geometry isusudly attributed to two famous
French thinkers. Pierre de Fermat (1601-1665) and Rene Descartes (1596-1650). They ussd the
agebraic techniques devel oped by Cardano and Viete and goplied them to tackle classicd
geometrica problemsthat had remained unsolved since thetime of the Greeks. The new kind of
organic connection between agebraand geometry thus established meant amgor breskthrough
without which the subsequent deve opment of mathematicsin generd, and in particular of
geometry and the calculus, would be unthinkable. It aso had significant impact on agebraic
thinking.

In hisfamous book La Geometrie (1637) Descartes established equiva ences between dgebraic
operations and geometrical constructions. In order to do s0, heintroduced a* unit length”, serving
asreferencefor dl other lengths and dl operations among them. Descartes found the square root
of any given number, as represented by aline segment. However, the key step in the con-
druction has been theintroduction of the*unit length” Functiond Groups (FG). This ssemingly
trivid move, or anything Smilar to it, had never been part of Greek geometry and itslegacy and,
of courseg, it had enormous repercuss ons on what could now be done by gpplying dgebraic
reasoning to geometry.

Descartes work wasagarting point for the definite trandformation of polynomiasinto an
autonomous object of intrinsic mathematica interest. Algebrabecameidentified, to alarge
extent, with the theory of polynomids. A dear notion of apolynomid equation, together with
exiging techniquesfor solving some of them, dlowed for a coherent and systemeatic
reformulation of many questions that mathemati cians in the past had dedlt withinamore
haphazard fashion. High in the agendaremained the open question of finding dgebraic solutions
of equations of degree higher than four. Closdly rdated to thiswas the question of the kinds of
numbersthat should count aslegitimate roots of equations. The atemptsto ded with thesetwo
important problems helped redli ze the centrdity of another pressing question that needed to be
duddated, namdy, the questions of the number of solutions that agiven polynomia equation
has.

The answer to thisquestion is afforded by the so-called Fundamental Theorem of Algebra(FTA),
which assertsthat every polynomid in red coefficients can be expressed asthe product of linear
and quadratic (red) factors, or, dternativdy, that every polynomid equation of degree nin
complex coefficients has n complex roots.

Thefirst complete proof of the FTA isusudly attributed to Carl Friedrich Gauss (1777- 1855) in
hisdoctord dissertation of 1799. Subsequently, Gauss himsdlf provided three additiond proofs.
Later on, additiond proofswere given by others, such as the Swiss bookkeeper Jean-Robert
Argand (1768-1822) in 1814, and the German mathematician father and son, Hellmuth Kneser
(1898-1973) in 1940 and Martin Kneser in 1981.

A mgor breskthrough in the way to €lucidating the question of dgebraicaly solving higher-
degree equations was achieved by Lagrangein 1770. Rather than trying to directly find apossble
solution for an equation of degreefive, Lagrange attempted to darify first why dl atemptsto do
0 had faled so far. Heinvestigated the known solutions of cubic (i.e: third-degree) and cuatic
(i.e: fourth-degree polynomid) equationsand in particular, how certain d gebraic expressons
connected with those solutions remain invariant when the coefficients of the equetions are
permuted with one another. Lagrange was cartain that adegper andydis of thisinvariancewould



providethe key ingght to underglanding the essence of existing methods of solution by radicals, in
the hope of being then able to extend them successfully to higher degrees.

Using the ideas devel oped by Lagrange, the Itdian Paolo Ruffini (1765-1822) was the fird
methematician ever to assart theimpaossibility of an dgebraic solution for the general polynomid
eguation of degree greeter than four. He adumbrated in hiswork the notion of agroup of
permutations (see below), and worked out some of its basic properties. Ruffini 's proofs,
however, contained severd, Sgnificant gaps.

The Norwegian mathematica star of the early nineteenth century, Niels Henrik Abd (1802-
1829), provided in 1824 the first dear and accepted proof of the impossibility of solving by
radicals, equations of degreefive or above. Thisdid not bring the question to an end, but rather
opened an entirdy new fied of research, since, as Gauss's exampl e showed, some equations
wereindeed solvable.

Rather than establishing for specific equationsiif they can or cannot be solved by radicds, as
Abd had suggested, Evariste Gdois (1811-1832) pursued the somewhat more generd problem of
defining necessary and sufficient conditions for the solvability of any given equation.

A sriesof unusud and unfortunate eventsinvolving the most important French contemporary
mathematicians prevented Galois' ideas from being published for along time. It was not until
1846 that Joseph Liouville (1809-1882) edited and published for the first time, in his
prestigious Journal de Mathermatiques Pures et Appliquees, the important memoire where Galois
had presented his main ideas and that the Paris Academy had turned down in 1831. Liowville
dso lectured in Paris on thetopic, to areduced audience. Leopold Kronecker (1823-1891) working
in Belin, goplied some of theseideasto number theory in 1853, and Richard Dedekind (1831-1916)
lectured on Gaoistheory in 1856 at G6titngen. At this point, however, theimpact of the theory
was till minimd.

A mgor turning-point came with the works of the leading Paris mathematician Camille Jordan
(1838-1922) who published a series of papers and an influential book in 1870. Jordan € aborated
atheory of groups of permutations, independently of any reference to equations, and the use of
thistheory to the question of agebraic solvability gopeared in hisbook just as aparticular
gpplication of thetheory. A lengthy process eventudly led from here to the conception of Galois
theory asthe sudy of theinterconnections between extensons of fidds and therdated Galois
groups of equitions, aconception that would prove fundamentd for developing acompletdy new
approach to dgebrain the 1920s. Mg or contributions to the deve opment of this point of view
for Gdoistheory came varioudy from later works by Dedekind, Enrico Betti (1823-1892),
Henrich Weber (1842-1913), and Emil Artin (1898-1962), among others.

Feix Klein (1849-1925) was gill avery young professor when in hisinaugurd lecture a the
Univergity of Erlangen (1872) he suggested how group theoreticd ideas might be

fruitfully put to usein the context of geometry. Sincethe beginning of the 19" century the study of
projective geometry hed attained renewed impetus, and later on, non-Eudidean geometries were
introduced and increasingly investigated. This proliferation of geometriesraised pressing
questions concerning both the interrd ations among them and their relations with the empirica
world.



Klein suggested that the many kinds of existing geometries could be classified and ordered
within aconceptud hierarchy: thus, for instance, projective geometry seemsto be more
fundamental, because projective properties are relevant dso, e.g., in Euclidean geometry. The
main concepts of thelatter, however, such aslength or angle, haveno sgnificancein theformer.
But then, thishierarchy may be expressed in terms of transformations that |eave invariant such
properties as are distinctly relevant to each of the geometriesin question. These
transformations, it turnsout, are best understood when seen asforming agroup. An example
related with Eudidean geometry clearly illugtrates the basic idea behind this.

In the 1880'sand 1890’ s, Klein' sfriend, the Norwegian Sophus Lie (1842-1899) undertook,
together with some of his sudentsa Lepzig, the enormoustask of dassfying dl possible groups
of continuous groups of geometric transformations, atask that would eventudly evolveinto the
modern theory of Liegroups and Lie dgebras. At roughly the sametime, Jules Henri Poincaré
(1854-1912) gtudied in France the groups of motions of rigid bodies, awork thet contributed more
than the others mentioned here to soreading the notion of group asamain tool in modern
geometry.

Thenotion of group dso sarted to gopear prominently in number theory in the nineteenth century,
epecidly inthework of Gauss on modular arithmetic. In this context he proved results that were
later generdly reformulated in the abstract theory of groups. Thus, for instance (in modern
terms), that in acydic group there dways exists asubgroup of every order dividing the order of
the group. Gauss aso studied the group-theoretical properties of transformeations of quadratic
forms, formsthat play amgor rolein his number-theoreticd investigations.

Arthur Cayley (1821-1895), one of the most prominent British mathematicians of histime,
wasthefirst to explicitly redize, in 1854, that agroup could be defined aostractly, i.e.: without
any reference to the nature of its dements and only by specifying the properties of the
operation defined on them.

In 1854, even theideaof group of permutationswas rather new and thus Cayley’ swork had
littleimpact. It would teke until 1882, and severd additiond articlesby Cayley himsdf, aswdl
as by Eugene Netto (1846-1919) and Georg Frobenius (1849-1917), before Wdther van Dyck
(1856-1934) would publish in 1882 the full-fledged and most generd definition of an abstract
group. Bookslike Heinrich Weber’ s Lehrbuch de Algebra (1895) and Theory of Groups (1897) by
William Burnsde (1852-1927) wereinstrumentd in bringing the theory to atruly broad
audience of mathematicians.

In spite of the many novd ideas that arose in connection with agebrain the nineteenth century,
solving equations and studying properties of polynomia forms continued to be the main focus
of interest of the discipline. Animportant offshoot of the study of polynomidswasthe

devd opment of thetheory of dgebracinvaiants, to which much effort was dedicated by |eading
adgebraigs sncethe 1840s, especidly in Germany (but which, for lack of spacewill not be
congdered here). The study of sysems of equations|ed to deve oping the nation of adeterminant
and, later on, to thetheory of matrices

Givenasygem of nlinear equationsin nunknowns adeterminant istheresult of acertain combined
multiplication and addition of the coefficentsinvolved, that dlows ca culaing directly the values
of theunknowns. Thus, for instance, given the system:



axX+by=a
ax+hy=c

The determinant of the system isthe number A = ay. bz - a1, and the values of the unknowns are
given by

X = (c1.bz - c2.by)/Ay = (a1.c2 - @2.c1)/A

Cauchy published in 1815 thefirst truly systematic and comprehensive sudy of determinants
(including the very name). Heintroduced the notation (as, n) for the system of coefficientsof the
system and showed how to cd culate the vd ue of the determinant by expanding any row or column
with the adjoint of every dement.

Closdy rdated with determinantsis theideaof amatrix, namdy, any arrangement of numbers
inlinesand columns. That such an arrangement can be taken as an autonomous mathematical object,
on which one can define a specia arithmetic and operate as with ordinary numbers, wasfirst
conceived by Cayley and his good friend James Joseph Sylvester (1814-1897), in the 1850s.
Determinants were amain, direct source for thisidea, but so were ideas contained in previous
work on number theory by Gauss and by Ferdinand Gotthold Eisengtein (1823-1852).

David Hilbert (1862-1943) wasthe most influentid German mathematician of theturn of the
century, and aleading algebraist as that. His early work on algebraic invariants reshaped this
sub-discipline, through alegitimization of non-constructive proofs for the existence of certain
agebraic objects (afinite bas s of asystem of invariants, in this case). Hiswork on the theory of
agebraic number fiddsin the 1890swas decisve in establishing the conceptua agpproach
promoted by Dedekind, in oppodtion to the more agorithmically oriented one of Kronecker, as
the dominant onein the discipline for the next decades. His work on the foundations of
geometry, starting on 1899, introduced atotdly new gpproach to the use of axiomaticaly
defined coneceptsin mathematics a large. The undisputed leader of the vibrant world-class center
of exact sciencesin G6ttingen, hisinfluence was enormoudy felt through the 68 doctora
dissertations he directed, as wdl asthrough the tens of distinguished mathematicians that
started thelr careers as students under his spdl. Thedructurd view of dgebrawasto alarge
extent the product of some of Hilbert’ sinnovations, yet Hilbert himsdf basicdly remained a
representative of the dasscal discipline of dgebra It islikdy that the kind of dgebrathat
deveoped under the influence of van der Waerden' s book was of no direct gpped to Hilbert.

In 1910 Erngt Steinitz (1871-1928) published one of the most influentiad milestones leading to
the structurd image of agebrain aresearch piece on the abstract theory of fields. The greatest
influence behind the consolidation of the structura image of dgebrais no doubt Emmy
Noether, who became the most prominent figure in Gottingen in the 1920s.

After the late 1930s it was clear that algebra, and in particular the structurd approach withinit,
had become amost dynamic domain of research, and its methods, results and concepts were being
actively pursued by mathematiciansin Germany, France, the USA, Japan and others. It was aso
successfully gpplied to redefine severd classica mathematicd disciplines. Two important early
examples of this are the thorough reformulation of a gebraic geometry in the hands of Van der
Weaerden, Well, and Oscar Zariski (1899- 1986), us ng the concepts and the gpproach



deveoped in ring theory by Emmy Noether and their successors, and thework of Marshdl Stone
(1903-1989), who in thelate 1930s defined Boolean agebras, bringing under apurdy agebrac
framework ideas semming from logic, topology and agebraitsdf.

Over thefallowing decades severd additiond textbooksin agebra gppeared following the paradigm
established by van der Waerden. Prominent among theseis A Survey of Modern Algebra first
published in 1941 by Saunders Mac Lane (1909 - ) and Garret Birkhoff (1921-1996), a book
that became fundamentd to the next severd generations of thethriving agebrac ressarch
community inthe USA.. Algebrawasincreasingly taught and investigated now from astructurd
perspective dl around the world.

Neverthles, it isimportant to stressthat not al algebraistsfdt, at least a the beginning, that
the new direction implied by Moderne Algebra was the correct oneto follow. A much more

classi cally-oriented research with deeply significant results in group theory, theory of group
representations, Lie groups, etc. was still being carried out until well into the 1930s and much
later. Worth of specid attention in this respect are, anong many others, Georg Frobenius, and
Issa Schur (1875-1941), who were the most outstanding representetives of the Berlin
mathematica school at the beginning of the century, and together with them, one of Hilbert's
most prominent students, Hermann Weyl (1895-1955).

Embedded Story
Simultaneous Equations Story

A set of two or more equations, each containing two or more variables whose values can
simultaneously satisfy both or al of the equations in the set., the number of variables being equal
to or less than the number of equationsin the set.

Thelinear equations are said to be simultaneous if they are considered at the same time. for
example, X +y =5 and x - y = 1 are simultaneous when considered together.

For asystem of equations to have a unigque solution, the number of equations must equal the
number of unknowns. Even then a solution is not guaranteed. If a solution exists, the system is
consistent; if not, it isinconsistent. A system of linear equations can be represented by
amatrix whose elements are the coefficients of the equations. Though simple systems of two
equations in two unknowns can be solved by substitution, larger systems are best handled with
matrix techniques.

Example 1. Ahmad has more money than Ali. If Ahmad gave Ali INR 20, they would have
the same amount. Whileif Ali gave Ahmad INR 22, Ahmad would then have twice as much
as Ali. How much does each one actually have?

Solution Pointers

Let Ahmad have x, and let Ali havey.

First Action: x-20=y=20, Therefore x-y=40

Second Action: x+22=2*(y-22), Therefore, x-2y=-66



MATLAB:
>> al=[1; 1]
al=

1

1

>>a2=[-1, -2]

>> b=[40; -66]
b=

40

-66
>>s=A\b
S=

146

106

Therefore, Ahmad started with INR 146 and Ali with INR 106

Example 2. 1000 tickets were sold. Adult tickets cost INR 8.50, children's cost INR 4.50,
and atotal of INR 7300 was collected. How many tickets of each kind were sold?

Solution Pointers.
Let x be the number of adult tickets. Let y be the number of children's tickets.
Therefore, x + y=1000 and 8.5x + 4.5y = 7300

MATLAB:
>> A=[11; 8.5 4.5]
A=
1.0000 1.0000
8.5000 4.5000

>> b=[1000; 7300]
b=

1000

7300
>> s=A\b



S=
700
300

Therefore, number of adult tickets sold is 700 and children 300

Example 3. Mrs. Puri invested INR 30,000 in two stocks. Thefirst gave a dividend of 5%
and the second stock 8%. The total dividend on the investment was INR 2,100. How much
did sheinvest in each stock?

Solution Pointers
Total invest: x +y = 30000
Total dividend: .05x + .08y = 2100

MATLAB:
>> A=[11; .05.08]
A=
1.0000 1.0000
0.0500 0.0800

>> h=[30000; 2100]
b=
30000
2100
>> s=A\b
S=
10000
20000

Example4. Saman has 30 coins, consisting of quarters and dimes, which total INR 5.70.
How many of each does she have?

Solution Pointers:
Let x be the number of quarters. Let y be the number of dimes.

Therefore, x +y = 30, and .25x +.10y = 5.7

MATLAB:
>> A=[11; .25.1]
A=
1.0000 1.0000
0.2500 0.1000

>> b=[30; 5.7]
b=
30.0000
5.7000

10



>>s=A\b
S =

18

12

Therefore, 18 quarters and 12 dimes.

Example5: Electric Circuit
Consider the following electrical circuit (resistors are in ohms, currents in amperes, and voltages
areinvolts):

Given the relationship, voltage=resistance multiplied by current, and the circuits shown above,
find the values of the currentsil, i2,i3

7-1(1-i2)-6-2(i1-i3)=0
“1(i2-i1) - 2(2) - 3(12-3) =0
6-3(i3-i2) - 1(i3) - 2(3- 1) =0

Simplifying,

-3il+ i2+2i3=-1
i1-6i2+3i3=0

2i1+3i2-6i3=-6

This system can be described with matricesin the form Ax = b, where A is the matrix of the
coefficients of the currents, x is the vector of unknown currents, and b is the column vector of
constants on the right of the equalities.

MATLAB:
>>A=[-3121-6323-6];

11



>> p=[-1 0-6]"; % where b is the column vector of constants on the right
>>i=A\b
| =
3.0000
2.0000
3.0000
% Therefore, 11=3; i2=2; i3=3 amperes

Example 6: Nodal Analysis
For the circuit shown below, resistors are in ohms and current sources are in amps. F[ind the
nodal voltages V1, V2, and Va.

A nodal analysis can be performed by examining each node in acircuit. The goal isto find out
what the voltages are in each node with respect to our reference node. We need to know the
currents flowing in the circuit and the resistances between each nodes. Thisisjust an application
of the Ohm's Law.

Kirchhoff’s current law (KCL) states that for any electrical circuit, the algebraic sum of all the
currents at any node in the circuit is zero.

In thistype of analysis, if there are n nodesin acircuit, and we select areference node (node 0),
the other nodes can be numbered from V1 through Vi1

With one node selected as node O (reference), there will be n-1 independent equations. If we
assume that the admittance between nodesi and j is given as Yj;, we can write the following
equations including al of the nodesin the circuit:

where:

m=n-1

V1, V2,..., Vm are voltages from all the nodes with respect to node O
isthe agebraic sum of current sources at node m.

The above system of equations can be expressed in matrix form as:
YV=I
V=Y

12



Using KCL, and forming our matrices Y and I, let’ s see...

For node V1 we have,

and the first row of our Y matrix is going to be the coefficients for the voltages. This means that
we can form our matrix in Matlab like this:

Y(@,)=[(U1+1/?2) -11 -12];

and naturally I(1) = 5;

At node V>,

the second row of our Y matrix is going to be the new set of coefficients for the voltages. Letting
Matlab work out the operations, we express

Y(2,:)=[V1 (-V1-14-15) 1/4;

and1(2) =0;

Finally, at node V3 we have,

thus, our third row of the Y matrix is

Y(3;:)=[-V2-1/4 (U2 + 14)];

and1(3) =2;

MATLAB
>> Y(1,)=[(V1+1/2) -U1 -1/2];
>> Y(2,)=[V1 (-U1 - 14 -1/5) V4];
>> Y(3,)=[-U2 -1/4 (U2+1/4)];
>>Y
Y =
1.5000 -1.0000 -0.5000
1.0000 -1.4500 0.2500
-0.5000 -0.2500 0.7500
>>1=[502]"
>> |
| =
5
0
2
>>V=Y\|
V =
40.4286
35.0000
41.2857

Example 7: Circuit Analysis, building on the previous example. Calculate the values of
voltages on the shown four nodes, V1 to V4.

This circuit contains more components: 6 resistors (in ohms), a current source (in amperes), a
voltage source (in volts) and a voltage source that produces its voltage depending on a current
going through another branch of the circuit (that’s called a current- branch of the circuit (that’s
called a current-controlled voltage source, or CCVS).

The schematic for this exampleis shown below:
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The symbol of the constant current sourceiis:

10

In particular, the current through this sourceis 10 A.

The symbol for the current-controlled voltage sourceis:

- X ~

203

oy

I2DIx|

In particular, this source is creating a voltage of 20 times the current Ix, that goes through the top
branch of the circuit, that is, through the 4-ohm resistor.

We are going to solve a linear system that represents our circuit. We have 4 variables and can study 4
nodes (the remaining node is the reference node or ground), and we are going to solve the linear
equation YV = | by using the left division available in Matlab, V = Y\I, where Y is the square matrix (4 x 4)
of coefficients of the unknowns in our system, V is the 4-element column vector representing the nodes,
and | is the 4-element column vector of constants on the right of the system. Each row of our
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matrices is going to summarize the anaysis of each node, while each column is going to contain

the coefficients of the unknowns.

Kirchhoff’s current law (KCL) states that for any electrical circuit, the algebraic sum of all the

currents at any node in the circuit equals zero.
Anaysis

At node 1, we have
Current going to it, 10 A.

Currents going out from it, V1/40, (V1-V2)/10, and (V1-V4)/4

In mathemeatics that means:
10=V1/40+ (V1-V2)/10+ (V1-V4)/4

Rearranging the above numbers, the first row of our Y matrix is:

Y(1,:) =[(/40 + /4 + 1/10) (-1/10) 0 -1/4]
And the first element of our column | is;
(1) =10

At nodes 2 and 3, we can see that

V2 -V3=20Ix, but we also know that Ix = (V1-V4)/4

that means that
V2-V3=20(V1-V4)/4

and we conclude that the second row of our Y matrix is:

Y(2,:))=[5-11-5]
The second element of our column | is
1(2)=0

From super nodes 2 and 3, we get
(V2 = V1)/10 + V2/8 + V3/20 + (V3 - V4)/30 = 0

This produces our third row of the Y matrix:
Y(3,:) =[-1/10 (/10 + 1/8) (1/20 + 1/30) -1/30]

Thethird dement of | is
1(3)=0

And at node 4, we easily see that V4 = 20.
This means that

Y(4,:)=[0001]

and

1(4) =20

Because of the above explanation, our Y matrix is
Y =[(1/40 + 1/4 + 1/10) -1/10 0 -1/4
5-11-5
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-1/10 (1/10 + 1/8) 1/20 + 1/30 -1/30
0001]

Our constant vector on the right of our system is
I =[50020]

And, thanks to the left division, we can easily solve our simple circuit, by just typing
V =Y\l

Nodal voltagesV1,V2,V3, V4 are
V =
36.2215
35.8306
- 45.2769
20

MATLAB
>> Y (1,:)=[(1/40+1/4+1/10) (-1/10) 0 -1/4];
>>Y(2,)=[5-11-5];
>> Y (3,:)=[-1/10 (1/10+1/8) (1/20+1/30) -1/30];
>>Y(4,))=[0001];
Y =

0.3750 -0.1000 0 -0.2500

5.0000 -1.0000 1.0000 -5.0000

-0.1000 0.2250 0.0833 -0.0333

0 0 0 1.0000

>>1=[500 20]"
| =
5
0
0
20
>>V=Y\|
V =
36.2215
35.8306
-45.2769
20.0000

Some mor e simple examples

The examples that follow purposaly deal with simple real world scenarios that could be viewed
analytically and modeled mathematically. The analytical thinking cultivated through simple
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examples will naturally extend to an ability for solving complex through the process of parallel
or lateral thinking.

Example 9: The age three persons x, y, z are represented by the following simultaneous
equation. Find the ages.

X+y+z=120; y=x-z; and x=3z
Therefore the equations are:
X+y+z=120; -x+y+z=0; x-3z=0

INnMATLAB:
>>A=[111;-111;10-3];
>> B=[120;0;0];
>> S=inv(A)*B
S=

60.00

40.00

20.00

Example 10: There are 24 coins that are worth $4.5. How many are quarters? How many are
dimes?

Simultaneous equations:

g+d=24; 25q+10d=450

MATLAB:
>> A=[11;25 10];
>> B=[24; 450];
>> d=det(A)
d=

-15.00
>> S=inv(A)*B
S=

14.00

10.00

Example 11: A professor has fixed three mid-term exams for the sasme day. CS499 isreally
hard, requiring twice as much prep time as the other two exams. Of the other two CS200 and
CS250, you want to spend two more opf prep time on CS250. Write Systems of linear equations
and solve the problem allocating prep time, allowing for 8 hours of sleep.

Solution: Let thre three courses be denoted by x,y, and z.

X+y+z=16; X=2* (y+2); z=y+2; z=y+2,

Therefore,

X+y+z=16; x-2y-2z=0; and -y+z=2.

MATLAB:
>>A=[1111-2-2,0-11];
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>> B=[16;0;2];
>> S=inv(A)*B
S=
10.6667
1.6667
3.6667

Example 12 : A dietitian wishes to plan ameal around three foods. The meal is to include 8800

units of vitamin A, 3380 units of vitamin C, and 1020 units of calcium. The number of units of

the vitamins and calcium in each ounce of the foods is summarized in the following table:
Food| FoodIl Food Il

Vitamin A 200 500 800

Vitamin C 110 570 340

Cacium 90 30 60

Determine the amount of each food the dietitian should include in the meal in order to meet the

vitamin and cal cium requirements.

The simultaneous equations are:

200x+500y+800z=2800; 110x+570y+340z=1380; and 90x+30y+60z=200

Diet Planning

A=[200 500 800;110 570 340;90 30 60];
B=[2800; 1380; 200];
>> D=det(A)
D=
-21600000.00
>> S=inv(A)*B
S=
-0.08
0.54
3.18

Sour ces.
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