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Algebra and Simultaneous Equations Story

The name algebra is derived from the title of the ground breaking book, Kitab al-mukhtasar fi
hisab aljabr wa’l-muqabala, written by a Muslim scholar Muhammad ibn Musa al-Khwarizmi,
in 825 AD. A systematic study of methods for solving quadratic equations constituted a central
concern of Muslim mathematicians, and hence their important contributions to the progress of
algebraic thinking. A no less central contribution is related to the Muslim reception and
transmission of ideas related to the Hindu system of numeration, to which they also added
fundamental components lacking so far, such as decimal fractions.

Al-Khwarizmi's work embodies much of what is central to Muslim contributions in this field.
He declared his book to be intended as one of practical value, yet this definition hardly applies
to what one finds there. In the first part of his book Al-Khwarizmi presented the procedures for
solving six types of equations: squares equal roots, squares equal numbers, roots equal numbers,
squares and roots equal numbers, squares and numbers equal roots, and roots and numbers equal
a square. (ln modern notation: ax2 = bx, ax2 = c, bx = c, ax2 + bx = c, ax2 + c = bx, and bx + c = ax2,
respectively.) Neither zero nor the negative numbers appear here as legitimate coefficients or
solutions to equations. Moreover, we find nothing like symbolic representation or abstract
symbol manipulation and, in fact in the problems, even the quantities are written in words rather
than in symbols. All procedures are described verbally. This is nicely illustrated by the following,
typical example:

What must be the square which, when increased by ten of its own roots, amounts
to thirty- nine? The solution is this: You halve the number of roots, which in the
present instance yields five. This you multiply by itself; the product is twenty-
five. Add this to thirty-nine; the sum is sixty-four. Now take the root of this which
is eight, and subtract form it half the number of the roots which is five; the
remainder is three. This is the root of the square which you sought for.

In the second part, al-Khwarizmi uses propositions taken from book II of Euclid’s Elements in
order to provide geometrical justification for his procedures. As remarked above, in their original
context those were purely geometrical texts. Here they are directly connected, for the first time,
to the question of solving quadratic equations. This is a hallmark of the Muslims' approach to
solving equations: systematize all cases and provide a geometric justification, based on Greek
sources. In the XI century, the Persian mathematician, astronomer, and poet Omar
Khayyam showed how to express roots of cubic equations by line segments obtained by
intersecting conic sections. Omar Khayyam applied Greek knowledge on conic sections to
questions involving cubic variables.

The use of Greek-style, geometrical arguments in this context also led to a gradual loosening of
certain basic, traditional constraints. Thus, Muslim mathematicians allowed, and indeed
encouraged at variance with the Greek tradition, the unrestricted combination of commensurable
and incommensurable magnitudes within the same framework, as well as the simultaneous
manipulations of magnitudes of different dimensions as part of the solution of an individual
problem. Thus, in the work of Abu Kamil the solution of a quadratic equation is a “number”,
rather than a “line segment” or an “area”. Combined with the use of the decimal system, this
approach was fundamental in developing a more abstract and general conception of number,
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which eventually became essential for the creation of a full-fledged abstract idea of an
equation.

The beginning of algebra goes back to the time of ancient Egypt and Babylon, where people
learned to solve linear (ax = b) and quadratic (ax2 + bx = c) equations, as well as indeterminate
equations such as x2 + y2 = z2, whereby several unknowns are involved. The ancient
Babylonians solved arbitrary quadratic equations by essentially the same procedures taught
today. They also could solve some indeterminate equations.

The Alexandrian mathematicians Hero of Alexandria and Diophantus continued the traditions of
Egypt and Babylon, but Diophantus's book Arithmetica is on a much higher level and gives
many surprising solutions to difficult indeterminate equations.

Ancient civilizations wrote out algebraic expressions using only occasional abbreviations, but by
medieval times Muslim mathematicians were able to talk about arbitrarily high powers of the
unknown x, and work out the basic algebra of polynomials (without yet using modern
symbolism). This included the ability to multiply, divide, and find square roots of polynomials as
well as a knowledge of the binomial theorem.

Indian mathematicians such as Brahmagupta and Bhaskara in 6-12th developed non-symbolic, yet
very precise, procedures for solving equations of degree one and two, and equations on more than
one variable. However, the main contribution of Hindu mathematics to algebra concerns the
elaboration of the decimal, positional numeral system, which closely accompanied the development
of symbolic algebra in renaissance Europe. By the ninth century the Hindus certainly had a full-
fledged decimal, positional system, yet many of its central ideas had been transmitted well
before that to China and the Islam. Hindu arithmetic, moreover, developed consistent and correct
sets of rules for operating with positive and negative numbers, and zero was treated as a number
like any other, even in problematic contexts such as division. It would still take several hundreds of
years before European mathematics would be in a position to fully integrate ideas of this kind
into the developing discipline of algebra.

Chinese mathematicians during the period parallel to the European middle ages developed
their own methods for solving quadratic equations by "radicals" (i.e.: displaying the solutions
as expression involving the coefficients, the four basic algebraic operations, and roots of
them) and for classifying such solutions. They also attempted to solve higher degree equations
in this same direction, yet unsuccessfully. Thus, they were led to approximation methods of high
accuracy, such as developed by Yang Hui in the twelfth century AD. The advantages in
calculations afforded by their expertise with the abacus may help explain why Chinese
mathematicians followed more intensively this approach rather than make additional progress
with radical methods.

Early in the 16th century, the Italian mathematicians Scipione del Ferro, Niccolò Tartaglia,
and Gerolamo Cardano solved the general cubic equation in terms of the constants appearing in
the equation. Cardano's pupil, Ludovico Ferrari, soon found an exact solution to equations of the
fourth degree (see quartic equation), and as a result, mathematicians for the next several
centuries tried to find a formula for the roots of equations of degree five, or higher. Early in the
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19th century, however, the Norwegian mathematician Niels Abel and the French
mathematician Evariste Galoisproved that no such formula exists.

An important development in algebra in the 16th century was the introduction of symbols for the
unknown and for algebraic powers and operations. As a result of this development, Book III
of La géometrie (1637), written by the French philosopher and mathematician René Descartes,
looks much like a modern algebra text. Descartes's most significant contribution to mathematics,
however, was his discovery of analytic geometry, which reduces the solution of geometric
problems to the solution of algebraic ones. His geometry text also contained the essentials of a
course on the theory of equations, including his so-called rule of signs for counting the number
of what Descartes called the "true" (positive) and "false" (negative) roots of an equation. Work
continued through the 18th century on the theory of equations, but not until 1799 was the proof
published, by the German mathematician Carl Friedrich Gauss, showing that every polynomial
equation has at least one root in the complex plane.

By the time of Gauss, algebra had entered its modern phase. Attention shifted from
solving polynomial equations to studying the structure of abstract mathematical systems whose
axioms were based on the behaviour of mathematical objects, such as complex numbers, that
mathematicians encountered when studying polynomial equations. Two examples of such
systems are algebraic groups and quaternions, which share some of the properties of number
systems but also depart from them in important ways. Groups began as systems of permutations
and combinations of roots of polynomials, but they became one of the chief unifying concepts of
19th-century mathematics. Important contributions to their study were made by the French
mathematicians Galois and Augustin Cauchy, the British mathematician Arthur Cayley, and the
Norwegian mathematicians Niels Abel and Sophus Lie. Quaternions were discovered by British
mathematician and astronomer William Rowan Hamilton, who extended the arithmetic of
complex numbers to quaternions while complex numbers are of the form a + bi, quaternions are
of the form a + bi + cj + dk.

Immediately after Hamilton's discovery, the German mathematician Hermann Grassmann began
investigating vectors. Despite its abstract character, American physicist J. W. Gibbs recognized
in vector algebra a system of great utility for physicists, just as Hamilton had recognized the
usefulness of quaternions. The widespread influence of this abstract approach led George
Boole to write The Laws of Thought (1854), an algebraic treatment of basic logic. Since that
time, modern algebra—also called abstract algebra—has continued to develop. Important new
results have been discovered, and the subject has found applications in all branches of
mathematics and in many of the sciences as well.

The classical discipline of algebra starts its actual development after the consolidation of the idea
of an equation in Viete’s work. At the same time, during this same period of time, new mathe-
matical objects gradually arose (groups, rings, fields, etc.), that eventually came to replace the
study of polynomials as the main subject matter of algebra and became the new focus of interest
of the discipline.
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The creation of what came to be known as analytic geometry is usually attributed to two famous
French thinkers: Pierre de Fermat (1601-1665) and Rene Descartes (1596-1650). They used the
algebraic techniques developed by Cardano and Viete and applied them to tackle classical
geometrical problems that had remained unsolved since the time of the Greeks. The new kind of
organic connection between algebra and geometry thus established meant a major breakthrough
without which the subsequent development of mathematics in general, and in particular of
geometry and the calculus, would be unthinkable. It also had significant impact on algebraic
thinking.

In his famous book La Geometrie (1637) Descartes established equivalences between algebraic
operations and geometrical constructions. In order to do so, he introduced a “unit length”, serving
as reference for all other lengths and all operations among them. Descartes found the square root
of any given number, as represented by a line segment. However, the key step in the con-
struction has been the introduction of the “unit length” Functional Groups (FG). This seemingly
trivial move, or anything similar to it, had never been part of Greek geometry and its legacy and,
of course, it had enormous repercussions on what could now be done by applying algebraic
reasoning to geometry.

Descartes’ work was a starting point for the definite transformation of polynomials into an
autonomous object of intrinsic mathematical interest. Algebra became identified, to a large
extent, with the theory of polynomials. A clear notion of a polynomial equation, together with
existing techniques for solving some of them, allowed for a coherent and systematic
reformulation of many questions that mathematicians in the past had dealt with in a more
haphazard fashion. High in the agenda remained the open question of finding algebraic solutions
of equations of degree higher than four. Closely related to this was the question of the kinds of
numbers that should count as legitimate roots of equations. The attempts to deal with these two
important problems helped realize the centrality of another pressing question that needed to be
elucidated, namely, the questions of the number of solutions that a given polynomial equation
has.

The answer to this question is afforded by the so-called Fundamental Theorem of Algebra (FTA),
which asserts that every polynomial in real coefficients can be expressed as the product of linear
and quadratic (real) factors, or, alternatively, that every polynomial equation of degree n in
complex coefficients has n complex roots.

The first complete proof of the FTA is usually attributed to Carl Friedrich Gauss (1777- 1855) in
his doctoral dissertation of 1799. Subsequently, Gauss himself provided three additional proofs.
Later on, additional proofs were given by others, such as the Swiss bookkeeper Jean-Robert
Argand (1768-1822) in 1814, and the German mathematician father and son, Hellmuth Kneser
(1898-1973) in 1940 and Martin Kneser in 1981.

A major breakthrough in the way to elucidating the question of algebraically solving higher-
degree equations was achieved by Lagrange in 1770. Rather than trying to directly find a possible
solution for an equation of degree five, Lagrange attempted to clarify first why all attempts to do
so had failed so far. He investigated the known solutions of cubic (i.e.: third-degree) and cuartic
(i.e.: fourth-degree polynomial) equations and in particular, how certain algebraic expressions
connected with those solutions remain invariant when the coefficients of the equations are
permuted with one another. Lagrange was certain that a deeper analysis of this invariance would
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provide the key insight to understanding the essence of existing methods of solution by radicals, in
the hope of being then able to extend them successfully to higher degrees.

Using the ideas developed by Lagrange, the Italian Paolo Ruffini (1765-1822) was the first
mathematician ever to assert the impossibility of an algebraic solution for the general polynomial
equation of degree greater than four. He adumbrated in his work the notion of a group of
permutations (see below), and worked out some of its basic properties. Ruffini 's proofs,
however, contained several, significant gaps.

The Norwegian mathematical star of the early nineteenth century, Niels Henrik Abel (1802-
1829), provided in 1824 the first clear and accepted proof of the impossibility of solving by
radicals, equations of degree five or above. This did not bring the question to an end, but rather
opened an entirely new field of research, since, as Gauss 's example showed, some equations
were indeed solvable.

Rather than establishing for specific equations if they can or cannot be solved by radicals, as
Abel had suggested, Evariste Galois (1811-1832) pursued the somewhat more general problem of
defining necessary and sufficient conditions for the solvability of any given equation.

A series of unusual and unfortunate events involving the most important French contemporary
mathematicians prevented Galois’ ideas from being published for a long time. It was not until
1846 that Joseph Liouville (1809-1882) edited and published for the first time, in his
prestigious Journal de Mathematiques Pures et Appliquees, the important memoire where Galois
had presented his main ideas and that the Paris Academy had turned down in 1831. Liouville
also lectured in Paris on the topic, to a reduced audience. Leopold Kronecker (1823-1891) working
in Berlin, applied some of these ideas to number theory in 1853, and Richard Dedekind (1831-1916)
lectured on Galois theory in 1856 at G6titngen. At this point, however, the impact of the theory
was still minimal.

A major turning-point came with the works of the leading Paris mathematician Camille Jordan
(1838-1922) who published a series of papers and an influential book in 1870. Jordan elaborated
a theory of groups of permutations, independently of any reference to equations, and the use of
this theory to the question of algebraic solvability appeared in his book just as a particular
application of the theory. A lengthy process eventually led from here to the conception of Galois
theory as the study of the interconnections between extensions of fields and the related Galois
groups of equations, a conception that would prove fundamental for developing a completely new
approach to algebra in the 1920s. Major contributions to the development of this point of view
for Galois theory came variously from later works by Dedekind, Enrico Betti (1823-1892),
Henrich Weber (1842-1913), and Emil Artin (1898-1962), among others.

Felix Klein (1849-1925) was still a very young professor when in his inaugural lecture at the
University of Erlangen (1872) he suggested how group theoretical ideas might be

fruitfully put to use in the context of geometry. Since the beginning of the 19 th century the study of
projective geometry had attained renewed impetus, and later on, non-Euclidean geometries were
introduced and increasingly investigated. This proliferation of geometries raised pressing
questions concerning both the interrelations among them and their relations with the empirical
world.



6

Klein suggested that the many kinds of existing geometries could be classified and ordered
within a conceptual hierarchy: thus, for instance, projective geometry seems to be more
fundamental, because projective properties are relevant also, e.g., in Euclidean geometry. The
main concepts of the latter, however, such as length or angle, have no significance in the former.
But then, this hierarchy may be expressed in terms of transformations that leave invariant such
properties as are distinctly relevant to each of the geometries in question. These
transformations, it turns out, are best understood when seen as forming a group. An example
related with Euclidean geometry clearly illustrates the basic idea behind this.

In the 1880’s and 1890’s, Klein’s friend, the Norwegian Sophus Lie (1842-1899) undertook,
together with some of his students at Leipzig, the enormous task of classifying all possible groups
of continuous groups of geometric transformations, a task that would eventually evolve into the
modern theory of Lie groups and Lie algebras. At roughly the same time, Jules Henri Poincaré
(1854-1912) studied in France the groups of motions of rigid bodies, a work that contributed more
than the others mentioned here to spreading the notion of group as a main tool in modern
geometry.

The notion of group also started to appear prominently in number theory in the nineteenth century,
especially in the work of Gauss on modular arithmetic. In this context he proved results that were
later generally reformulated in the abstract theory of groups. Thus, for instance (in modern
terms), that in a cyclic group there always exists a subgroup of every order dividing the order of
the group. Gauss also studied the group-theoretical properties of transformations of quadratic
forms, forms that play a major role in his number-theoretical investigations.

Arthur Cayley (1821-1895), one of the most prominent British mathematicians of his time,
was the first to explicitly realize, in 1854, that a group could be defined abstractly, i.e.: without
any reference to the nature of its elements and only by specifying the properties of the
operation defined on them.

In 1854, even the idea of group of permutations was rather new and thus Cayley’s work had
little impact. It would take until 1882, and several additional articles by Cayley himself, as well
as by Eugene Netto (1846-1919) and Georg Frobenius (1849-1917), before Walther van Dyck
(1856-1934) would publish in 1882 the full-fledged and most general definition of an abstract
group. Books like Heinrich Weber’s Lehrbuch de Algebra (1895) and Theory of Groups (1897) by
William Burnside (1852-1927) were instrumental in bringing the theory to a truly broad
audience of mathematicians.

In spite of the many novel ideas that arose in connection with algebra in the nineteenth century,
solving equations and studying properties of polynomial forms continued to be the main focus
of interest of the discipline. An important offshoot of the study of polynomials was the
development of the theory of algebraic invariants, to which much effort was dedicated by leading
algebraists since the 1840s, especially in Germany (but which, for lack of space will not be
considered here). The study of systems of equations led to developing the notion of a determinant
and, later on, to the theory of matrices.

Given a system of n linear equations in n unknowns, a determinant is the result of a certain combined
multiplication and addition of the coefficients involved, that allows calculating directly the values
of the unknowns. Thus, for instance, given the system:
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a1x + b1y = c1

a2x + b2y = c2

The determinant of the system is the number ∆ = a1. b2 - a2b1, and the values of the unknowns are
given by

x = (c1.b2 - c2.b1)/∆, y = (a1.c2 - a2.c1)/∆

Cauchy published in 1815 the first truly systematic and comprehensive study of determinants
(including the very name). He introduced the notation (a1, n) for the system of coefficients of the
system and showed how to calculate the value of the determinant by expanding any row or column
with the adjoint of every element.

Closely related with determinants is the idea of a matrix, namely, any arrangement of numbers
in lines and columns. That such an arrangement can be taken as an autonomous mathematical object,
on which one can define a special arithmetic and operate as with ordinary numbers, was first
conceived by Cayley and his good friend James Joseph Sylvester (1814-1897), in the 1850s.
Determinants were a main, direct source for this idea, but so were ideas contained in previous
work on number theory by Gauss and by Ferdinand Gotthold Eisenstein (1823-1852).

David Hilbert (1862-1943) was the most influential German mathematician of the turn of the
century, and a leading algebraist as that. His early work on algebraic invariants reshaped this
sub-discipline, through a legitimization of non-constructive proofs for the existence of certain
algebraic objects (a finite basis of a system of invariants, in this case). His work on the theory of
algebraic number fields in the 1890s was decisive in establishing the conceptual approach
promoted by Dedekind, in opposition to the more algorithmically oriented one of Kronecker, as
the dominant one in the discipline for the next decades. His work on the foundations of
geometry, starting on 1899, introduced a totally new approach to the use of axiomatically
defined concepts in mathematics at large. The undisputed leader of the vibrant world-class center
of exact sciences in G6ttingen, his influence was enormously felt through the 68 doctoral
dissertations he directed, as well as through the tens of distinguished mathematicians that
started their careers as students under his spell. The structural view of algebra was to a large
extent the product of some of Hilbert’s innovations, yet Hilbert himself basically remained a
representative of the classical discipline of algebra. It is likely that the kind of algebra that
developed under the influence of van der Waerden’s book was of no direct appeal to Hilbert.

In 1910 Ernst Steinitz (1871-1928) published one of the most influential milestones leading to
the structural image of algebra in a research piece on the abstract theory of fields. The greatest
influence behind the consolidation of the structural image of algebra is no doubt Emmy
Noether, who became the most prominent figure in Gottingen in the 1920s.

After the late 1930s it was clear that algebra, and in particular the structural approach within it,
had become a most dynamic domain of research, and its methods, results and concepts were being
actively pursued by mathematicians in Germany, France, the USA, Japan and others. It was also
successfully applied to redefine several classical mathematical disciplines. Two important early
examples of this are the thorough reformulation of algebraic geometry in the hands of Van der
Waerden, Weil, and Oscar Zariski (1899- 1986), using the concepts and the approach
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developed in ring theory by Emmy Noether and their successors, and the work of Marshall Stone
(1903-1989), who in the late 1930s defined Boolean algebras, bringing under a purely algebraic
framework ideas stemming from logic, topology and algebra itself.

Over the following decades several additional textbooks in algebra appeared following the paradigm
established by van der Waerden. Prominent among these is A Survey of Modern Algebra first
published in 1941 by Saunders Mac Lane (1909 - ) and Garret Birkhoff (1921-1996), a book
that became fundamental to the next several generations of the thriving algebraic research
community in the USA. Algebra was increasingly taught and investigated now from a structural
perspective all around the world.

Neverthles, it is important to stress that not all algebraists felt, at least at the beginning, that
the new direction implied by Moderne Algebra was the correct one to follow. A much more
classically-oriented research with deeply significant results in group theory, theory of group
representations, Lie groups, etc. was still being carried out until well into the 1930s and much
later. Worth of special attention in this respect are, among many others, Georg Frobenius, and
Issai Schur (1875-1941), who were the most outstanding representatives of the Berlin
mathematical school at the beginning of the century, and together with them, one of Hilbert's
most prominent students, Hermann Weyl (1895-1955).

Embedded Story
Simultaneous Equations Story

A set of two or more equations, each containing two or more variables whose values can
simultaneously satisfy both or all of the equations in the set., the number of variables being equal
to or less than the number of equations in the set.

The linear equations are said to be simultaneous if they are considered at the same time. for
example, x + y = 5 and x - y = 1 are simultaneous when considered together.

For a system of equations to have a unique solution, the number of equations must equal the
number of unknowns. Even then a solution is not guaranteed. If a solution exists, the system is
consistent; if not, it is inconsistent. A system of linear equations can be represented by
a matrix whose elements are the coefficients of the equations. Though simple systems of two
equations in two unknowns can be solved by substitution, larger systems are best handled with
matrix techniques.

Example 1. Ahmad has more money than Ali. If Ahmad gave Ali INR 20, they would have
the same amount. While if Ali gave Ahmad INR 22, Ahmad would then have twice as much
as Ali. How much does each one actually have?

Solution Pointers
Let Ahmad have x, and let Ali have y.
First Action: x-20=y=20, Therefore x-y=40
Second Action: x+22=2*(y-22), Therefore, x-2y=-66
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MATLAB:
>> a1=[1; 1]
a1 =

1
1

>> a2=[-1; -2]
a2 =

-1
-2

>> A=[a1 a2]
A =

1 -1
1 -2

>> b=[40; -66]
b =

40
-66

>> s=A\b
s =

146
106

Therefore, Ahmad started with INR 146 and Ali with INR 106

Example 2. 1000 tickets were sold. Adult tickets cost INR 8.50, children's cost INR 4.50,
and a total of INR 7300 was collected. How many tickets of each kind were sold?

Solution Pointers.

Let x be the number of adult tickets. Let y be the number of children's tickets.

Therefore, x + y=1000 and 8.5x + 4.5y = 7300

MATLAB:
>> A=[1 1; 8.5 4.5]
A =

1.0000 1.0000
8.5000 4.5000

>> b=[1000; 7300]
b =

1000
7300

>> s=A\b
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s =
700
300

Therefore, number of adult tickets sold is 700 and children 300

Example 3. Mrs. Puri invested INR 30,000 in two stocks. The first gave a dividend of 5%
and the second stock 8%. The total dividend on the investment was INR 2,100. How much
did she invest in each stock?

Solution Pointers

Total invest: x + y = 30000

Total dividend: .05x + .08y = 2100

MATLAB:
>> A=[1 1; .05 .08]
A =

1.0000 1.0000
0.0500 0.0800

>> b=[30000; 2100]
b =

30000
2100

>> s=A\b
s =

10000
20000

Example 4. Saman has 30 coins, consisting of quarters and dimes, which total INR 5.70.
How many of each does she have?

Solution Pointers:
Let x be the number of quarters. Let y be the number of dimes.

Therefore, x + y = 30, and .25x +.10y = 5.7

MATLAB:
>> A=[1 1; .25 .1]
A =

1.0000 1.0000
0.2500 0.1000

>> b=[30; 5.7]
b =

30.0000
5.7000



11

>> s=A\b
s =

18
12

Therefore, 18 quarters and 12 dimes.

Example 5: Electric Circuit
Consider the following electrical circuit (resistors are in ohms, currents in amperes, and voltages
are in volts):

Given the relationship, voltage=resistance multiplied by current, and the circuits shown above,
find the values of the currents i1, i2, i3

7 - 1(i1 - i2) - 6 - 2(i1 - i3) = 0
-1(i2 - i1) - 2(i2) - 3(i2 - i3) = 0
6 - 3(i3 - i2) - 1(i3) - 2(i3 - i1) = 0

Simplifying,

-3i1 + i2 + 2i3 = -1
i1 - 6i2 + 3i3 = 0

2i1 + 3i2 - 6i3 = -6

This system can be described with matrices in the form Ax = b, where A is the matrix of the
coefficients of the currents, x is the vector of unknown currents, and b is the column vector of
constants on the right of the equalities.

MATLAB:
>> A=[-3 1 2 1 -6 3 2 3 -6];
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>> b=[-1 0 -6]'; % where b is the column vector of constants on the right
>> i=A\b
i =

3.0000
2.0000
3.0000

% Therefore, i1=3; i2=2; i3=3 amperes

Example 6: Nodal Analysis
For the circuit shown below, resistors are in ohms and current sources are in amps. F[ind the
nodal voltages V1, V2, and V3.

A nodal analysis can be performed by examining each node in a circuit. The goal is to find out
what the voltages are in each node with respect to our reference node. We need to know the
currents flowing in the circuit and the resistances between each nodes. This is just an application
of the Ohm's Law.

Kirchhoff’s current law (KCL) states that for any electrical circuit, the algebraic sum of all the
currents at any node in the circuit is zero.

In this type of analysis, if there are n nodes in a circuit, and we select a reference node (node 0),
the other nodes can be numbered from V1 through Vn-1.
With one node selected as node 0 (reference), there will be n-1 independent equations. If we
assume that the admittance between nodes i and j is given as Yij, we can write the following
equations including all of the nodes in the circuit:

where:
m = n - 1
V1, V2,..., Vm are voltages from all the nodes with respect to node 0
is the algebraic sum of current sources at node m.

The above system of equations can be expressed in matrix form as:
Y V = I
V = Y -1I
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Using KCL, and forming our matrices Y and I, let’s see...
For node V1 we have,
and the first row of our Y matrix is going to be the coefficients for the voltages. This means that
we can form our matrix in Matlab like this:
Y(1,:) = [(1/1 + 1/2) -1/1 -1/2];
and naturally I(1) = 5;
At node V2,
the second row of our Y matrix is going to be the new set of coefficients for the voltages. Letting
Matlab work out the operations, we express
Y(2,:) = [1/1 (-1/1 - 1/4 - 1/5) 1/4];
and I(2) = 0;
Finally, at node V3 we have,
thus, our third row of the Y matrix is
Y(3,:) = [-1/2 -1/4 (1/2 + 1/4)];
and I(3) = 2;

MATLAB
>> Y(1,:)=[(1/1+1/2) -1/1 -1/2];
>> Y(2,:)=[1/1 (-1/1 - 1/4 -1/5) 1/4];
>> Y(3,:)=[-1/2 -1/4 (1/2+1/4)];
>> Y
Y =

1.5000 -1.0000 -0.5000
1.0000 -1.4500 0.2500
-0.5000 -0.2500 0.7500

>> I=[5 0 2]';
>> I
I =

5
0
2

>> V=Y\I
V =

40.4286
35.0000
41.2857

Example 7: Circuit Analysis, building on the previous example. Calculate the values of
voltages on the shown four nodes, V1 to V4.

This circuit contains more components: 6 resistors (in ohms), a current source (in amperes), a
voltage source (in volts) and a voltage source that produces its voltage depending on a current
going through another branch of the circuit (that’s called a current- branch of the circuit (that’s
called a current-controlled voltage source, or CCVS).

The schematic for this example is shown below:
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The symbol of the constant current source is:

In particular, the current through this source is 10 A.

The symbol for the current-controlled voltage source is:

In particular, this source is creating a voltage of 20 times the current Ix, that goes through the top
branch of the circuit, that is, through the 4-ohm resistor.

We are going to solve a linear system that represents our circuit. We have 4 variables and can study 4
nodes (the remaining node is the reference node or ground), and we are going to solve the linear
equation YV = I by using the left division available in Matlab, V = Y\I, where Y is the square matrix (4 × 4)
of coefficients of the unknowns in our system, V is the 4-element column vector representing the nodes,

and I is the 4-element column vector of constants on the right of the system. Each row of our
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matrices is going to summarize the analysis of each node, while each column is going to contain
the coefficients of the unknowns.

Kirchhoff’s current law (KCL) states that for any electrical circuit, the algebraic sum of all the
currents at any node in the circuit equals zero.

Analysis

At node 1, we have
Current going to it, 10 A.
Currents going out from it, V1/40, (V1 - V2)/10, and (V1 - V4)/4

In mathematics that means:
10 = V1/40 + (V1 - V2)/10 + (V1 - V4)/4

Rearranging the above numbers, the first row of our Y matrix is:
Y(1, :) = [(1/40 + 1/4 + 1/10) (-1/10) 0 -1/4]
And the first element of our column I is:
I(1) = 10

At nodes 2 and 3, we can see that
V2 – V3 = 20Ix, but we also know that Ix = (V1 - V4)/4
that means that
V2 – V3 = 20(V1 - V4)/4

and we conclude that the second row of our Y matrix is:
Y(2, :) = [5 -1 1 -5]
The second element of our column I is
I(2) = 0

From super nodes 2 and 3, we get
(V2 – V1)/10 + V2/8 + V3/20 + (V3 - V4)/30 = 0

This produces our third row of the Y matrix:
Y(3, :) = [-1/10 (1/10 + 1/8) (1/20 + 1/30) -1/30]

The third element of I is
I(3) = 0

And at node 4, we easily see that V4 = 20.
This means that
Y(4, :) = [0 0 0 1]
and
I(4) = 20

Because of the above explanation, our Y matrix is
Y = [(1/40 + 1/4 + 1/10) -1/10 0 -1/4
5 -1 1 -5
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-1/10 (1/10 + 1/8) 1/20 + 1/30 -1/30
0 0 0 1]

Our constant vector on the right of our system is
I = [5 0 0 20]’

And, thanks to the left division, we can easily solve our simple circuit, by just typing
V = Y\I

Nodal voltages V1, V2, V3, V4 are
V =

36.2215
35.8306

- 45.2769
20

MATLAB
>> Y(1,:)=[(1/40+1/4+1/10) (-1/10) 0 -1/4];
>> Y(2,:)=[5 -1 1 -5];
>> Y(3,:)=[-1/10 (1/10+1/8) (1/20+1/30) -1/30];
>> Y(4,:)=[0 0 0 1];
Y =

0.3750 -0.1000 0 -0.2500
5.0000 -1.0000 1.0000 -5.0000
-0.1000 0.2250 0.0833 -0.0333

0 0 0 1.0000

>> I=[5 0 0 20]'
I =

5
0
0

20
>> V=Y\I
V =

36.2215
35.8306
-45.2769
20.0000

Some more simple examples

The examples that follow purposely deal with simple real world scenarios that could be viewed
analytically and modeled mathematically. The analytical thinking cultivated through simple
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examples will naturally extend to an ability for solving complex through the process of parallel
or lateral thinking.

Example 9: The age three persons x, y, z are represented by the following simultaneous
equation. Find the ages.

x+y+z=120; y=x-z; and x=3z
Therefore the equations are:
x+y+z=120; -x+y+z=0; x-3z=0

In MATLAB:
>> A=[1 1 1;-1 1 1;1 0 -3];
>> B=[120;0;0];
>> S=inv(A)*B
S =

60.00
40.00
20.00

Example 10: There are 24 coins that are worth $4.5. How many are quarters? How many are
dimes?
Simultaneous equations:
q+d=24; 25q+10d=450

MATLAB:
>> A=[1 1;25 10];
>> B=[24; 450];
>> d=det(A)
d =

-15.00
>> S=inv(A)*B
S =

14.00
10.00

Example 11: A professor has fixed three mid-term exams for the same day. CS499 is really
hard, requiring twice as much prep time as the other two exams. Of the other two CS200 and
CS250, you want to spend two more opf prep time on CS250. Write Systems of linear equations
and solve the problem allocating prep time, allowing for 8 hours of sleep.
Solution: Let thre three courses be denoted by x,y, and z.
x+y+z=16; x=2*(y+z); z=y+2; z=y+2;
Therefore,
x+y+z=16; x-2y-2z=0; and -y+z=2.

MATLAB:
>> A=[1 1 1;1 -2 -2;0 -1 1];
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>> B=[16;0;2];
>> S=inv(A)*B
S =

10.6667
1.6667
3.6667

Example 12 : A dietitian wishes to plan a meal around three foods. The meal is to include 8800
units of vitamin A, 3380 units of vitamin C, and 1020 units of calcium. The number of units of
the vitamins and calcium in each ounce of the foods is summarized in the following table:

Food I Food II Food III
-------------------------------------------------------
Vitamin A 200 500 800
Vitamin C 110 570 340
Calcium 90 30 60
--------------------------------------------------------
Determine the amount of each food the dietitian should include in the meal in order to meet the
vitamin and calcium requirements.
The simultaneous equations are:
200x+500y+800z=2800; 110x+570y+340z=1380; and 90x+30y+60z=200

Diet Planning

A=[200 500 800;110 570 340;90 30 60];
B=[2800; 1380; 200];
>> D=det(A)
D =

-21600000.00
>> S=inv(A)*B
S =

-0.08
0.54
3.18

Sources:
http://www.algebra.com/algebra/about/history
http://www.tau.ac.il/~corry/publications/articles/pdf/algebra%20EB.pdf
http://www.mathcentre.ac.uk/resources/Engineering%20maths%20first%20aid%20kit/latexsourc
e%20and%20diagrams/2_13.pdf
http://www.matrixlab-examples.com/
https://www.mathworks.com/academia/courseware/introduction-to-engineering-
analysis/index.html?s_iid=accourse_cw_ac_bod


