
1

Programming in MATLAB versus Python

Introduction

MATLAB is a programming platform designed specifically for engineers and scientists. The
heart of MATLAB is the MATLAB language, a matrix-based language allowing the most natural
expression of computational mathematics. MATLAB combines a desktop environment tuned for
iterative analysis and design processes with a programming language that expresses matrix and
array mathematics directly. The language, apps, and built-in math functions enable you to
quickly explore multiple approaches to arrive at a solution. MATLAB lets you take your ideas
from research to production by deploying to enterprise applications and embedded devices, as
well as integrating with Simulink® and Model-Based Design. MATLAB platform is a
proprietary product acquired at substantial cost from MathWorks, Inc MATLAB provided a
powerful learning environment for students in science and engineering. They can construct

solutions to problems, confirm and revise their solutions rapidly in MATLAB and look at the
solutions visually in 2D, 3D, and even higher dimensions as needed.

Python is the foremost general-purpose programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic typing and dynamic binding, make it
very attractive for Rapid Application Development, as well as for use as a scripting or glue
language to connect existing components together. Python supports libraries modules and
packages, adding power to the standard python distribution package. It allows for code
modularity and code reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major platforms, and can be freely
distributed. The edit-test-debug cycle is relatively is convenient and fast with open-source free
distribution versions such as Anaconda. Because Python is open and free, it is very easy for
everyone to design packages or other software tools further that extending the Python program
development environment.

Much of the MATLAB functionality can be achieved in Python with Python packages such
NumPy, SciPy and Matplotlib. However, the model-based design feature of MATLAB Simulink
with graphical design and modeling environment is not available for Python at this time.
MATLAB comes in a robust package as a commercial product. Python on the other hand is
influenced constantly by changes made available instantly leading sometime to code
incompatibility of new versions versus older versions.

The following are some side-by-side examples of programming in MATLAB and
Python.

Section 1: Simultaneous Equations and Matrices
Consider the following two simultaneous equation in variable x and y.
x-y=40 (1)
x-2y=-66 (2)
The solution needed is for values of x and y that will satisfy the two equations simultaneously.

2

We could find the solution by direct substitution.
From equation (1), x=40+y; substituting it for x in (2), we get
40+y-2y=-66; Therefore -y=-106 i.e. y=106
Now substituting this value (1), we get x-106=40 i.e. x=146
Solution: x=146 y=106

A shortened notation of denoting set of simultaneous linear algebraic equations is Ax=b where A
is the matrix of coefficients of the simultaneous equation, x denotes variable in the form of x11,
x12, …, x1n for the first equation; x21, x22, …, x2n for the second equation, and so on. And b is the
column vector of constants representing the right-hand side of the equations. The equations are
assumed to be well conditioned i.e. they lead to a meaningful solution. If the matrix is named A,
its inverse is denoted as A’.

Comparison of MATLAB and Python Solutions of Simultaneous Equations
Example 1:
MATLAB # Python
1
2
3
4
5
6
7
8
9
10
11

>> a= [1 -1; 1 -2]
a =

1 -1
1 -2

c =
40
-66

s= a\c
s =

146
106

(Note: MATLAB provides a natural
way of describing operation for
problems in science and engineering
making use of matrix operations. >>
is prompt from the system for stating
desired operations in a console
session where statements are
interpreted and executed as they are
entered.)

1
2
3
4
5
6
7
8
9
10
11

import numpy as np
A= np.array([[1, -1], [1, -2]])
C= [40, -66]
s= np.linalg.solve(A,C)
s
array([146., 106.])
(Alternatively)
Ainv= np.linalg.inv(A)
s= np.dot(Ainv,C)
s
array([146., 106.])

(Note: The first line imports Package
numpy for numerical methods and names it
as np. The second and thirst line are matrix
of coefficients and the corresponding array
for the right side of the equation. The
fourth line call np methods for solution of
simultaneous algebraic equation, and final
line show the solution in the form of values
for x and y.)

Example 2: Simple Plots

MATLAB Python
>> plot([1, 2, 3, 4], [1, 4, 9, 16]), xlabel('x'),
ylabel('y')

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
plt.xlabel('x')
plt.ylabel('y')
plt.show()

3

Note: Basic plotting functions are already and
need not be imported or loaded.

Example 3: Multiple Functions on the Same Plot
MATLAB Python
>> x= [0: 20: 200]
>> y1= x-40
>> y2=x/2 + 33
>> plot(x,y1, x, y2,'.-'), legend('x-y=40', 'x-
2y=-66')

(Note: MATLAB has tools for plotting in, generally more powerful
and easier to work with as compared to Python.)
(The lines intersect at x=146 and y= 106 as expected)

import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(0.0, 200.0, num=20)
t= x[:20]
y1=t-40
plt.plot(t,y1, ‘b’)
y2=t/2 + 33
plt.plot(t,y2, ‘r’)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Intersecting Lines')
plt.show()

Session 2: A Simple Example of using a Numerical Method

y

0 20 40 60 80 100 120 140 160 180 200
-40

-20

0

20

40

60

80

100

120

140

160

x-y=40

x-2y=-66

4

Example 4: Finding a Square Root of a Number
MATLAB Python

% Calculate square root of a given number by
% Newton's method
% Read input
x=input('Please type a number for calculating
square root:');
if x<=0
display('The number must be positive'); end;
% Initial guess.
xstart = x/2;
% Iteration loop to compute square root.
for i = 1:100
xnew = (xstart + x/xstart)/2; % new estimate
of square root.
display(xnew);% print xnew.
if abs(xnew - xstart)/xnew < eps

break % on convergence.
end;
xstart = xnew; % update estimate of square
root.
end

Running this program In MATLAB
>> Newton
% MATLAB response
Please type a number for calculating square
root:20
xnew = 6
xnew = 4.6667
xnew = 4.4762
xnew = 4.4721
xnew = 4.4721
xnew = 4.4721

import sys # to fetch epsilon value
eps = sys.float_info.epsilon
Calculate square root of a given number by
Newton's method
Read input
x= input("Please type a number for root finding
root:\n")
x= float (x)
if x<=0:

print('The number must be positive')
xstart = x/2 # initial guess
max= 1
while max < 5:

xnew=(xstart + x/xstart)/2 #new estimate
print(xnew)
if abs(xnew-xstart)/xnew < eps:

break
else:

max= max + 1
xstart=xnew

print (xnew)

(Run)
Please type a number for root finding root:
20
6.0
4.666666666666667
4.476190476190476
4.472137791286727
4.472137791286727

Session 3: Object-Oriented Programming

Object-oriented programming (OOP) is a computer programming framework that organizes
solutions to problems in terms of objects in the world, their attributes, and behavior. Consider a
bank that deals with customers. Customer records are maintained in terms of a set of well-
defined attributes, also known as properties or fields. Each customer is permitted a well-defined
set of operations, also known as the methods that may applied for those operations, visualized as
permissible behavior for each instance of customer account. A customer or his account may be
viewed as a class. The instances of this class, also called objects, are the specific accounts. Each

5

account is an object with attributes and behavior common to the customer account class. The
following example, defines an Investment as a class and each investment is an object or class
instance. The key feature of object-oriented programming is called encapsulation. Each object
has the same attributes defined in the class and only the operations defined for the class can be
performed on an instance of a class. Those performing the operations need not be aware of how
an operation is performed and the methods for those operations can modified without making the
users aware of it.

Example 5. Object-Oriented with Classes, Class Properties (Attributes) and Class Methods
(Behaviors)

MATLAB Python
classdef Investment

properties
Amount

end
methods

function obj = Investment(val)
if nargin == 1

obj.Amount = val;
end

end
function r = earning(obj,rate)

r = [obj.Amount] * rate/100;
end
function r = cumulate(obj, rate, years)

r = obj.Amount*(1+rate/100)^years;
end

end
end

class Investment:
def __init__(self, a=0):

self.amount=a #amount is an instance atribute of the
class

def plus(self, x):
self.amount += x

def minus(self, x):
self.amount -= x

def yearlyGrowth(self, x):
self.amount *= 1+x/100 # x% rate

def cumulate (self, x, y):
self.amount *= (1+x/100)**y # x% growth for y years

>> inv1=Investment
inv1 =
Investment with properties:

Amount: []
>> inv1.Amount=500.6789
>> inv1.earning(3)
ans = 15.0204
>> inv1.cumulate(3,1)
ans = 515.6993
>> inv1.cumulate(3,2)
ans = 531.1702

inv1=Investment(500.6789)
inv1.yearlyGrowth(3)
inv1.amount
515.6992
inv1.plus(50)
inv1.amount
565.6992
inv1.minus(65)
inv1.amount
500.6992
inv1.cumulate(3,2)
inv1.amount
531.17024501

The above examples are intended to provide a flavor of some problems with side-by-side coding
in MATLAB versus Python, and not intended to teach either MATLAB or Python, both beyond
the scope of this short note.

