Programming in MATLAB versus Python

I ntroduction

MATLAB is aprogramming platform designed specifically for engineers and scientists. The
heart of MATLAB isthe MATLAB language, a matrix-based language allowing the most natural
expression of computational mathematics. MATLAB combines a desktop environment tuned for
iterative analysis and design processes with a programming language that expresses matrix and
array mathematics directly. The language, apps, and built-in math functions enable you to
quickly explore multiple approaches to arrive at a solution. MATLAB lets you take your ideas
from research to production by deploying to enterprise applications and embedded devices, as
well asintegrating with Simulink® and Model-Based Design. MATLAB platform isa
proprietary product acquired at substantial cost from MathWorks, Inc MATLAB provided a
powerful learning environment for studentsin science and engineering. They can construct
solutions to problems, confirm and revise their solutions rapidly in MATLAB and look at the
solutions visually in 2D, 3D, and even higher dimensions as needed.

Python is the foremost general -purpose programming language with dynamic semantics. Its
high-level built in data structures, combined with dynamic typing and dynamic binding, make it
very attractive for Rapid Application Devel opment, as well as for use as a scripting or glue
language to connect existing components together. Python supports libraries modules and
packages, adding power to the standard python distribution package. It allows for code
modularity and code reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for al major platforms, and can be freely
distributed. The edit-test-debug cycle isrelatively is convenient and fast with open-source free
distribution versions such as Anaconda. Because Python is open and free, it is very easy for
everyone to design packages or other software tools further that extending the Python program
development environment.

Much of the MATLAB functionality can be achieved in Python with Python packages such
NumPy, SciPy and Matplotlib. However, the model-based design feature of MATLAB Simulink
with graphical design and modeling environment is not available for Python at this time.
MATLAB comesin arobust package as a commercial product. Python on the other hand is
influenced constantly by changes made available instantly |eading sometime to code
incompatibility of new versions versus older versions.

The following are some side-by-side examples of programming in MATLAB and
Python.

Section 1: Simultaneous Equations and Matrices

Consider the following two simultaneous equation in variable x and y.

X-y=40 2

X-2y=-66 2

The solution needed isfor values of x and y that will satisfy the two equations simultaneously.



We could find the solution by direct substitution.

From equation (1), x=40+y; substituting it for x in (2), we get
40+y-2y=-66; Therefore -y=-106i.e. y=106

Now substituting this value (1), we get x-106=40 i.e. Xx=146
Solution: x=146 y=106

A shortened notation of denoting set of simultaneous linear algebraic equations is Ax=b where A
isthe matrix of coefficients of the simultaneous equation, x denotes variable in the form of X1,
X12, ..., X1n fOr the first equation; xo1, X22, ..., Xon for the second equation, and so on. And b isthe
column vector of constants representing the right-hand side of the equations. The equations are
assumed to be well conditioned i.e. they lead to a meaningful solution. If the matrix is named A,
itsinverseisdenoted as A’.

Comparison of MATLAB and Python Solutions of Simultaneous Equations

Example 1:

# | MATLAB # | Python

1 |>>a=[1-1;1-2] 1 | import numpy as np

2 |a= 2 | A=nparray([[1, -1],[1, -2]])

3 1 -1 3 | C=140, -66]

4 1 -2 4 | s=np.linag.solve(A,C)

5 |c= 5 |s

6 40 6 | array([146., 106.])

7 -66 7 | (Alternatively)

8 |s=akc 8 | Ainv=np.linag.inv(A)

9 |s= 9 | s=np.dot(Ainv,C)

10| 146 10 |s

11| 106 11 | array([146., 106.])
(Note: MATLAB provides a natural (Note: Thefirst line imports Package
way of describing operation for numpy for numerical methods and namesiit
problemsin science and engineering asnp. The second and thirst line are matrix
making use of matrix operations. >> of coefficients and the corresponding array
is prompt from the system for stating for the right side of the equation. The
desired operationsin aconsole fourth line call np methods for solution of
session where statements are simultaneous algebraic equation, and final
interpreted and executed asthey are line show the solution in the form of values
entered.) forxandy.)

Example 2: Simple Plots
MATLAB Python

>>plot([1, 2, 3, 4], [1, 4, 9, 16]), xlabel('X"),
ylabel('y’)

import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
plt.xlabel ('x")

plt.ylabel('y")

plt.show()




Note: Basic plotting functions are already and
need not be imported or |oaded.

Example 3: Multiple Functions on the Same Plot

MATLAB Python
>> x=[0: 20: 200] import numpy as np
>>y1=x-40 import matplotlib.pyplot as plt

>>y2=x/2 + 33
>> plot(x,y1, x, y2,".-"), legend('x-y=40', 'x-
2y=-66)

(Note: MATLAB hastools for plotting in, generally more powerful
and easier to work with as compared to Python.)
(Thelines intersect at x=146 and y= 106 as expected)

x=np.linspace(0.0, 200.0, num=20)
t=x[:20]

y1=t-40

plt.plot(t,yl, ‘b’)

y2=t/2 + 33

plt.plot(t,y2, ‘r’)

plt.xlabel ('x")

plt.ylabel('y")

plt.title(’'Intersecting Lines)
plt.show()

Sesson 2: A Smple Exampleof usng a Numerical Method




Example4: Finding a Square Root of a Number

MATLAB

Python

% Cdculate squareroat of agiven number by

% Newton's method

% Read input

x=input('Please type anumber for ca culaing

squareroaot:’);

if x<=0

display('The number must be positive); end;

% Initid guess.

xgat =x/2,

% Iteration loop to compute square root.

fori =1:100

xnew = (xgart + x/xdart)/2;

of squareroot.

digplay(xnew); % print xnew.

if dos(xnew - xdart)/xnew < eps
breek % on convergence.

% new estimate

end,

xgart = xnew; % update estimate of square
root.

end

Running thisprogram In MATLAB

>> Newton

% MATLAB response
Please type anumber for cdculaing square
root:20

Xnew = 6

Xnew = 4.6667
Xnew = 4.4762
Xnew = 4.4721
Xnew = 4.4721
Xnew = 4.4721

importsys  #to fetch epsilon value
eps = sys.float_info.epsilon
# Calculate square root of a given number by
# Newton's method
# Read input
x= input("Please type a number for root finding
root:\n")
x= float (X)
if x<=0:
print('The number must be positive')
xstart = x/2 #initial guess
max= 1
while max < 5:
xnew=(xstart + x/xstart)/2 #new estimate
print(xnew)
if abs(xnew-xstart)/xnew < eps.
break
else:
max=max + 1
xstart=xnew
print (xnew)

(Run)

Please type a number for root finding root:
20

6.0

4.666666666666667

4.476190476190476

4.472137791286727

4.472137791286727

Session 3: Object-Oriented Programming

Object-oriented programming (OOP) is a computer programming framework that organizes
solutions to problems in terms of objectsin the world, their attributes, and behavior. Consider a
bank that deals with customers. Customer records are maintained in terms of a set of well-
defined attributes, also known as properties or fields. Each customer is permitted a well-defined
set of operations, also known as the methods that may applied for those operations, visualized as
permissible behavior for each instance of customer account. A customer or his account may be
viewed asaclass. Theinstances of this class, aso called objects, are the specific accounts. Each



account is an object with attributes and behavior common to the customer account class. The
following example, defines an Investment as a class and each investment is an object or class
instance. The key feature of object-oriented programming is called encapsulation. Each object
has the same attributes defined in the class and only the operations defined for the class can be
performed on an instance of a class. Those performing the operations need not be aware of how
an operation is performed and the methods for those operations can modified without making the
users aware of it.

Example 5. Object-Oriented with Classes, Class Properties (Attributes) and Class Methods

(Behaviors)
MATLAB Python
classdef Investment class Investment:
properties def __init_ (self, a=0):
Amount self.amount=a #amount is an instance atribute of the
end class
methods
function obj = Investment(val) def plus(self, x):
if nargin == self.amount += x
obj.Amount = val;
end def minus(sdlf, x):
end self.amount -= x

function r = earning(obj,rate)
r = [obj.Amount] * rate/100;

end

function r = cumulate(obj, rate, years)
r = obj.Amount* (1+rate/100)"\years,

def yearlyGrowth(self, x):
self.amount *= 1+x/100 # x% rate

def cumulate (self, x, y):

end self.amount *= (1+x/100)**y # x% growth for y years
end
end
>> invl=Investment inv1=Investment(500.6789)
invl= inv1.yearlyGrowth(3)
Investment with properties: inv1l.amount
Amount: [] 515.6992
>> inv1.Amount=500.6789 inv1.plus(50)
>> inv1.earning(3) inv1l.amount
ans= 15.0204 565.6992
>> invl.cumulate(3,1) inv1.minus(65)
ans = 515.6993 inv1l.amount
>> invl.cumulate(3,2) 500.6992
ans=531.1702 inv1l.cumulate(3,2)
invl.amount
531.17024501

The above examples are intended to provide a flavor of some problems with side-by-side coding
in MATLAB versus Python, and not intended to teach either MATLAB or Python, both beyond
the scope of this short note.



