
1

Computer Programming and Software Development Story

A computer program consists of a set of instructions directing the computer hardware to perform
some desired operations. A set of interrelated programs is called software. Hardware consists of
physical components for performing computations, and software consists of instructions stored
within a computer guiding it through a sequence of computations for some desired task. With
different software the same computer hardware can perform different tasks. It means that a
suitably general computing machine can emulate any specific ones. A computer program is
nothing more than a means of turning a general-purpose computer into a special-purpose one.

In the first half of the last century, Alan Turing proposed a theoretical mechanical programming
engine, known as the Turing Machine. This machine had an infinitely long tape, an internal
register storing its state, and a table of actions. At each step, it would read the symbol from the
current location on the tape and consult the table to find what it should do for that symbol given
the current state of the engine. It would then perform some or all of the following actions:
 Write a new symbol.
 Change the state in the internal register.
 Move the tape left or right.

The first computers were highly specialized machines. Due to the source of their funding, they
were focused heavily on running a set of simple algorithms that were used for code breaking.
Whenever the algorithm (or, in many cases, the input) changed, the computers needed to be
rewired.

It was a little while later that stored program computers emerged, such as the Manchester Baby.
Like the Turing Machine, these computers stored the algorithms they were to compute in the
same way they stored data. These early machines were programmed in pure machine code. The
operations that the computer would perform were represented by short binary sequences, and
programmers would enter them either by flipping switches, making holes in punch cards or
tapes, or pressing buttons.

Instead of binary sequences, most systems enabled programmers to enter short sequences as a
single octal or hexadecimal digit, but this still wasn’t ideal.

The binary system, whether coded in octal or hexadecimal digits, wasn’t very human-friendly, so
the idea of a symbolic assembler arose. Rather than entering the binary codes directly,
programmers would enter mnemonics that represented them. While an add operation might be
01101011, the programmer would enter ADD, which was much easier to remember.
These assembly language sequences had a simple one-to-one mapping with machine code
instructions, so a simple program comprising a lookup table was all that was required to turn
them into real code.

One of the biggest innovations introduced by symbolic assemblers was that of symbolic branch
destinations. Most programs involve large numbers of conditional statements: do one thing if a
value is in a certain range; otherwise, do something else.

2

At the machine-code level, they are translated into jumps, either relative or absolute, which move
the place from which the next instruction is read, either to a specific location or to a certain offset
from the current one.

A machine code programmer had to calculate these offsets and enter them in the program as
fixed numbers. If the programmer wanted to add another instruction somewhere, all jumps that
ended after this new instruction (or backward relative jumps from after it to before) needed to be
updated.

With a symbolic assembler, jumps could be given symbolic names, and the assembler would
convert these names into real addresses when it ran. If you added a new instruction somewhere,
you still needed to run the assembler again, but it would take care of the jump updates for you.
This made programs a lot more flexible. It also made them slightly more efficient.

The only kind of flow control available in a simple assembly language is the jump. As Edsger
Dijkstra famously wrote in his paper "GOTO Considered Harmful," this is not a very good way
of structuring programs. The proposed solution to this was to introduce subroutines (also often
called functions or procedures) and a stack for flow control. A subroutine is a block of code that
you would jump to, and then have control returned to the place of the call afterward. The first
way of implementing them was to write the return address just before the first instruction in the
subroutine. This is very easy to do, but there is a problem: there is no way for a subroutine to call
itself. The solution was to use a stack, which is a simple data structure in which values are
retrieved in the opposite order to their insertion. When you were about to jump to a subroutine,
you would push the return address onto a stack and then jump to the start of the subroutine. At
the end of the subroutine, it would get the top value from the stack and jump to it. This allowed a
procedure to call itself as many times as you have stack space to store addresses. Some
architectures, such as x86, include instructions for performing these operations.

This idea was extended to enable other values to be stored on the call stack. If a subroutine
needed some private space, it would move the location of the top of the stack up a bit, and use
the gap. This turned out to be a spectacularly bad idea because it meant that small bugs in a
program could make it easy for specially crafted input to overwrite the return address. A better
solution would have been to use a separate stack, but this has not proved to be popular. The stack
is also used for passing parameters to and from functions.

The archetypal stack-based language is Forth, which provides separate stacks for data and flow
control. In Forth, the language itself is stack-based, resembling reverse polish notation.
Subroutines in Forth are known as words because this is how they are represented in the code.
The interpreter simply scans a line of input, pushing the values onto the stack or executing a
subroutine when a word is encountered.

The ability to add words to Forth makes it well suited to meta-programming because new words
(subroutines) are indistinguishable from the core language to a programmer, giving rise to an
extensible programming language.

3

A related construct that gained some popularity at the same time was the co-routine. While a
subroutine is good for two pieces of code where one is subordinate to the other, co-routines work
better when there is not such a clear division between the two. Co-routines are often used to
simulate parallelism. While most modern languages don’t have support for co-routines directly,
they are common at the framework level for GUI programming, in which events are tied to
particular actions. These event handlers are run to completion by some form of run loop, which
is often hidden from the developer, giving the appearance of events happening independently.

A macro assembler allowed symbols to be defined representing sequences of instructions.
Things such as a function prologue and epilogue—the sequence of instructions needed at the
start and end of a subroutine—could be replaced by single symbols, reducing the amount of
typing required. Programmers began accumulating collections of macros for common activities,
and their code eventually began to resemble high-level descriptions of the algorithm. These sets
of macros gradually evolved into complete languages. One thing that macros could not do is free
the programmer from the need to manually allocate registers.

Most modern architectures can only perform computations on values stored in registers, of which
there are typically between 8, 32, or 64 bits long. A programmer must load values from memory
into registers, perform the calculations, and then store them back out to memory. Another
drawback of assembly language programming was that code was still tied to a specific
instruction set, even with a heavy use of macros. This made moving from one architecture to
another a significant investment.

The first high-level languages, such as FORTRAN, solved both of these problems. The compiler
would handle register allocation, and the only thing that would need to be rewritten for a new
architecture was the compiler. The compiler itself could be written in a high-level language, so
only the code generation part needed to be rewritten, and the rest just needed to be recompiled on
the new version.

One debate as old as programming languages has to do with when a type should be assigned to a
value. Most modern CPUs treat memory as a huge blob of un-typed bytes, while registers are
either integer or floating-point values (a few further differentiate between pointers and integers).
This means that it’s up to the program to determine the type of a value before loading it into a
register. If a value is a 16-bit integer, you need to use a 16-bit load operation with an integer
register as a destination operand, for example. There are two general ways in which this decision
can be made. The simplest to implement is the typed-variable mechanism (also called strongly
typed), in which each symbolic name for a value has an associated type. With typed-variable
languages, the compiler can determine the type at compile time. This is very popular with
compiler writers because it makes their job a lot easier. Within this family, there are explicitly
and implicitly typed languages. The former, such as Java, requires the programmer to assign a
type to each variable. The latter, such as Haskell, determines the type from what is done with the
value. For example, a variable used to store the result of a function that returns an integer will be
assumed to be an integer.

At the other extreme are languages such as Smalltalk and Lisp, which use the typed-value
approach (also called loosely, weakly, or dynamically typed languages). They keep track of types

4

at runtime, which can make programs considerably simpler because it’s possible to write very
generic code. Typed-variable languages typically do this with a template mechanism or through
poly-typing. The downside of this flexibility is runtime overhead. Before you can do any work
on a value, you have to determine its type.

Procedures are a way of tidying up program structure, but they are also very similar,
conceptually, to mathematical functions. The difference between functions and procedures
relates to state.

A mathematical function has no concept of global state, while a procedure does (and can
reference global program state as well as its own).

If you add restrictions to procedures—forcing them to behave as functions—you can then use
mathematical reasoning to prove that aspects of your program are correct. This is the foundation
for languages such as Ocaml and Haskell. Haskell, for example, is a pure functional language—
everything is a function. Haskell has no global state, so the result of a function depends solely on
its input, as with a mathematical function. This has a couple of interesting side effects from the
perspective of efficiency. The first is that execution order becomes less important. If you have
already computed the arguments to a function, you can compute the result whenever you want.
If you have computed the arguments to two functions, you can run them both in parallel because
no global state means no side effects. You also get the idea of lazy evaluation. If you don’t use
the return value of a function, you don’t need to bother computing it. This has been used to
produce some simple programs that run on very large data sets and only bother loading the parts
that are accessed. The program is written as though it performs a computation on the whole
dataset, but only results that are used are executed, so only data needed to compute them is
loaded.

In the late ’80s, Japan embarked on a program to build a next-generation programming
language—a fifth-generation language, or 5GL for short.

The idea of any programming language is to allow the programmer to provide a high-level
description and have the compiler turn it into a program. The 4GL concept is based on the idea
that any sufficiently well-specified problem is a solution to that problem. Instead of providing a
set of algorithms to solve the problem, the developer would produce a detailed description, and
the compiler would turn it into a program. The language that emerged from this project was a
variant of Prolog, although initial work in Prolog had begun in the early ’70s. While an
interesting language in its own right, and very useful in certain AI-related activities, it has failed
as a general-purpose language.

In 1969, Alan Kay and others at Xerox PARC proposed a mechanism for decomposing a
programming problem into smaller chunks that could be solved independently. These small
programs would then run on simulated small computers, which communicated via an abstract
message-passing interface. The simple computers were termed "objects" in the system, and the
combination of dynamic typing and message passing was dubbed "Object Oriented
Programming" by Alan Kay, as embodied by the Smalltalk language. Smalltalk itself was based

5

loosely on Simula, as part of a bet that it was possible to create a language embodying the
message-passing idea from Simula in a single page of code.

Just as in Haskell, in which everything is a function, in Smalltalk everything is an object. At the
simplest level, things like integers are objects. You can send messages to integers for simple
things such as addition, but you also get more complex ones used for flow control. Since blocks
of code are also objects, they can be passed as arguments with messages, so conditional
execution is performed by sending a message to (for example) an integer, containing another
integer and a block of code, which is executed if the two integers have the same value.
Smalltalk used a method of refinement known as inheritance. Objects were defined by sending
messages to a special kind of factory object, called a class. Classes (themselves instances of
meta-classes) created instances of objects according to a recipe.

When you wanted to create a new kind of object, you would copy an existing class, send
messages to it by adding new methods and instance variables to the objects it would create, and
then use this template to create new objects. This seems a long way away from the original
machine code

A language similar to Smalltalk, Objective-C adds Smalltalk-like extensions to C, which is about
as low-level as a high-level language can be—little more than a cross-platform assembler.
C provides two kinds of compound data types: arrays and structures. Arrays are strings of
variables of a single type (in C, a text string is an array of characters that are 8-bit integers).
Structures are heterogeneous collections with a fixed layout. When C is compiled, elements in an
array are found by multiplying the size of an individual element with the index, and elements in a
structure are located by adding a fixed offset to the address of the start of the structure. These
simple compound types are used to implement Objective-C. The first implementations of the
language comprised two components: a pre-processor that would emit C code and a runtime
library that handled the dynamic features. In more modern implementations the pre-processor is
omitted, and the code is generated directly without a C intermediate form.

Classes in Objective-C are represented by a simple structure that contains a list of instance
variable to offset mappings and a list of selectors to function mappings. A selector is simply an
abstract representation of the method name.

Given an object, it is possible to get the class by inspecting the first element in the structure and
then look up the methods. How are methods implemented? As plain C functions with a specific
signature. The first argument of a method is a pointer to the object on which the method is being
called, the second is the selector, and the remainder are the arguments passed to the method.

Objective-C makes some compromises for ease of implementation. Unlike Smalltalk, it also
supports "primitive types" that are not objects. In Objective-C, a 16-bit integer is an intrinsic
type that does not respond to messages and needs to be manipulated directly with C integer
expressions. In Smalltalk, the lowest two bits of a pointer are usually used to indicate the type. If
they have a specific value, the value is treated as an integer (after right-shifting by two) and has
some special handling. This adds a small amount of overhead since it’s necessary to check the
type of a value before sending it a message. It also means that integers can be compared for

6

equivalence in exactly the same way as objects in the virtual machine (by pointer comparison),
without needing a special case.

Smalltalk introduced a simple method of creating objects via factories known as classes. Self,
first introduced in 1986, went in a slightly different direction by using prototypes. In Self, instead
off defining the object and then instantiating it, you would clone and object and then add
methods and instance variables to it. This is also possible in Smalltalk, but the language isn’t
really designed for it. This style, known as prototype-based, object-oriented programming is now
one of the most widespread programming paradigms due to the fact that it was chosen by
Netscape in the mid-1990s as the model for its JavaScript scripting language. Since then, the use
of JavaScript, later standardized as ECMAScript, has found its way into a huge number of web
pages and web applications.

Prototype-based programming is generally considered more flexible than class-based
programming, and is often more understandable. When a specific behaviour is needed in only a
small number of instances of an object, it is much easier to only add it to this small number in
prototype-based languages. Class-based languages typically require more code to be written to
create a specialized version of a class, which encourages bloat in a smaller number or a large
spread of classes that are hard to read. The focus on inheritance in class-based languages makes
it much harder to add different, orthogonal, sets of behaviour to a group of objects (multiple
inheritance helps here, but comes with its own problems). Prototype-based languages, with their
dynamically changing types, are much harder to compile to heavily optimized code. This is
becoming less important, as the wide use of JavaScript has shown, but is still a concern in some
areas.

The developers of the Lisaac language attempted to address this by introducing static typing to a
prototyped language, which allows a huge body of research into optimizing languages like C to
be applied.

Smalltalk implements message passing as an indirect function call. From a certain perspective, it
can be seen that any function call is in fact a special case of a message-sending operation—
specifically a synchronous message-passing operation. The caller sends a message to the one
who called and then waits for it return. A simple extension to this to support parallelism. The
concept of futures allows parallelism to be simply added to a lot of existing algorithms. (This
was touched on briefly in the functional programming discussion.) The concept behind a future
is that you should not block execution of the caller when the function is called, but instead when
the return value is needed.

Consider the Quicksort algorithm, which partitions a set of data and then runs recursively on
both parts. A simple functional implementation of this would perform the pivot, run recursively
on one sub-array, run again on the other, and then return. The two recursive calls, however, do
not interfere with each other (this is trivial to prove in a functional language, and fairly easy in
other languages). A clever compiler could run both recursive calls in separate threads and wait
for the return.

7

Sufficiently clever compilers are quite hard to come by, but some languages make it easy to
implement this model in the library.

In Objective-C, for example, it is possible to write a generic piece of code that spawns an object
in a new thread, and executes messages sent to it asynchronously, returning a proxy object that
blocks whenever a message is sent to it.

Languages such as Erlang go a step further and expose asynchronous message passing directly to
the developer. This is not conceptually harder than synchronous messaging, but can be difficult
to grasp for people who have a lot of experience with synchronous programming. In Erlang, the
processes and messages are integral parts of the language. Creating a new process is a very cheap
operation, as is sending and receiving a message. While Erlang code tends to be slower on a
single processor than other languages, the fact that it is very easy to write code that scales to tens
or hundreds of processors makes up for it in a number of areas. Languages such as Erlang are
still in their infancy, but asynchronous programming is likely to grow in the next few years as the
number of processors in the average computer increases.

Synchronous programming tends to cause performance problems on parallel systems due to the
overhead of locking, while an asynchronous system can be implemented using lockless data
structures for communication.

The one requirement for a good parallel programming language, which is missing from most of
the languages discussed here, is that it must distinguish between aliased and mutable data.
If data is allowed to be both aliased (that is, multiple threads or processes have references to it)
and mutable, there are a large number of optimizations that are impossible, and locking is
required for safe access.

If the language (or, at least, the library) can enforce this restriction, parallel programming
becomes a lot easier. Erlang does this in a very simple way; all data is immutable with the
exception of a dictionary associated with a process (which is mutable, but rarely used).
This is the sort of solution a compiler writer would think of; it makes implementation easy at the
cost of some ease of use. Erlang inherited this single-assignment form from a family of
languages known as dataflow programming languages. They view programs as a directed graph
through which data flows.

This model fits well with parallel programming in a lot of cases because each filter in the graph
can execute concurrently. This model is common in visualization, and simple versions are found
in most media programming frameworks.

Web programming has introduced a lot of people to programming models that were previously
consigned to niches, and server-side scripting languages have brought in more.
While the ’90s were dominated by C-with-syntactic-sugar languages, this is slowly changing as
more people discover more flexible programming styles. Hopefully this trend will continue,
making the next 10 years an even more fun time to be a programmer.

8

Program Scripts

A scripting language allows one to write compact useful programs (where source really can be
modified by a person without much effort. Scripting languages such as : REXX, TCL, Perl,
Python, PHP and Javascript belong to a class called very high level languages (VHL).

The key advantage of a scripting language is common for any VHL language: it is the
compactness of the code, the compactness that gives a possibility to write the same applications
as a fraction (sometimes 1/10) lines of code in comparison with traditional compiled (C, Pascal)
or semi-compiled (Java) strongly typed languages. A typical scripting language allow to shrink
the number of lines of code for a typical application several times means, and that means lower
development costs, lower the amount of bugs and potentially better architecture.

As for the number of lines (or more correctly lexical tokens) to express a particular algorithm
Java looks like C. Java designers tried to create "C++ done right." but "done right" in not
enough. It is essentially C++ with garbage collection and without features like pointers and
memory allocation. Automatic memory allocation and garbage collection is now standard feature
of most modern languages so nothing new here. While Java managed to displace Cobol, it did it
not without some help of pure luck and huge amount of money spent by Sun and IBM to
promote the language and to create the necessary infrastructure.

Of course, there is no free lunch and sometimes you pay the price for using VHL instead of plain
vanilla high level languages, but with the current much higher speed CPUs and large amounts
random access memory (RAM) on desktops (and even laptops), it is not an unreasonable price
for probably 80-95% of the most applications. Small critical part can always be rewritten in
lower level language.

With simple scripting languages, users struggle less with the language and can devote more time
to the task itself. Perl and other more complex scripting languages have a steeper learning curve
but can serve as a more suitable tool for professionals. More compact and cleaner code that is
achievable by using scripting languages often helps to achieve higher quality in applications
development.

A language should adhere to principle of "least surprise" and do not break with previous
languages (and first of all C/C++ family as the dominant family of languages) unless it is
justified by some gains in power or transparency.

Simplicity and transparency of connecting to high level language (C or C++) is important,
particularly in large projects. Components can be produced in other language, the language that
has lower level and which is more flexible in operation on the level of detail required for some of
them. And the larger the project is, the more components are specialized enough to benefit from
implementation in the second language. Here TCL, a scripting language created by John
Ousterhout, is really good but Python and ruby should be considered too. Both provide clean
interface to C++ and C respectively. The advantage of Microsoft .NET framework is that it
permits using the same runtime engine for multiple languages. The same advantage can be
achieved using scripting langue that is compiled into JVM.

9

Quality and availability of "connectors" that permit using OS API (both built-in in the language
and external libraries)) might make 80% of the usability of the language in a large and complex
programming projects. In this (limited) sense libraries are more important then the language
itself. And it takes a lot of time (or money or both) for a language to get quality libraries.

Paradoxically debugging for scripting language can be more complex then in mainstream
languages like C/C++ for which the level of language is lower and the tools are definitely more
mature, feature rich and often commercially supported. Debugging tools available even for
popular scripting languages such as Perl, PHP and Python are still rather crude. This has a real
impact when working on non-trivial programs. Paradoxically for complex application
development the quality of the debugger is often as important as the quality of the language
implementation. It's is actually an important part of the quality of the language implementation.
It is not accidental that Donald Knuth, who probably is one of the greatest computer scientists
of all times, preferred to work with the language that is best integrated with the OS and has the
best debugger. For a viable scripting language, the debugger should be part of the language
design and the key part of the implementation not an afterthought. Scripting language designers
are still slow to realize this shift of the paradigm. In this area significant progress is needed. IDE
environments like Active State Komodo can help too (I can attest that they manage to eliminate
problems that haunted earlier, versions and version 3.1 and later are usable for Perl).

While each of the scripting language has innovative features in the design, the strong points that
helped wide adoption of the language, in certain areas, each of existing scripting languages has
problems that need to be recognized and rectified.

Typically, scripting languages are typeless. While this is definitely a more reasonable
compromise than type safely straitjacket of Java it can create some additional problem which can
easily be rectified by high quality cross reference tool, name space diagrams, pretty printers etc.
Actually exactly because of weak typing, high quality cross-reference tools should be considered
as a part of any decent scripting language implementation, not an add-on tool. Scripting
languages are evolving and are becoming more and more competitive with Java and C++ for
developing mainstream enterprise applications.

It's still unclear which scripting language will prevail in a long run, therefore right now one
should probably diversify and experiment with several of them. Moreover, if they are all using
.NET or JVM, then different languages can be optimal for different parts of the project. But still
any large project should have the "principal" language, the language that you feel best match the
majority of the project's needs. It's just impossible to learn several scripting languages to an
equal degree. I currently consider Perl to be my primary scripting language, but there is no JVM
based implementation of Perl and that affects scalability. I also use Python for tasks that benefit
from co-routines. Python also has a distinct advantage of having a JVM-based implementation
(Jython). Still Python puts more restrictions than Perl and in this sense is a little bit lower level
language. Python's innovating "indentation reveals real block structure" solution partly
compensates for that as it produces more vertically compact programs. Moreover, you can
choose your style of braces and prettyprinting as it is easy (and probably necessary) to imitate C-
style curvy braces using comments and a pretty printer. In this sense the Python is the most
modern language, the language where the editor in IDE should contain pretty printer by default.

10

TCL and REXX are probably the most underappreciated scripting languages in existence. Both
have almost zero learning curve. REXX syntax was by-and-large borrowed from PL/1 and is
more readable, while TCP has really minimalistic syntax. REXX was the first language that
served as both macro language and regular scripting language. It implements a very innovative
approach: any command that is not recognized by REXX interpreter is considered an application
command (if it used as a macro language for an application, for example an editor) or shell
command. TCL can be used for programming-in-large and C for programming in the small. Few
people understand that TCL+C is underappreciated and a unique development technology.
Generally, combining any scripting language with clean interface to C or C++ (or any other
suitable high-level language) and C/C++ is a very powerful software development paradigm.

Combination of JVM based scripting language and Java is also promising development method
that can compensate several weaknesses of Java as a system implementation language. Several
classic scripting languages now have Java-based implementation (Jython is one such example)
and there are also active developments on new scripting languages explicitly designed to be
macro languages for Java.

In dual-language (.NET, scripting language + C, or scripting language +Java) implementations
each language offers support that is useful in non trivial ways.

Perl and Python can be considered as attempts to provide a "compromise" language that is usable
for both programming in the large and programming in the small. Here Python has an important
advantage: unlike Perl, Python has more or less usable interface to C++, so it can be used for
dual language programming, although such cases are still infrequent (Python philosophy is
generally that same as Perl). Despite difficulties with the managing huge and very complex
interpreters both Perl and Python have a very strong following and nothing succeed like success.
It's probably wise to use both languages when appropriate. None is a silver bullet that solves all
the software-engineering problems.

One test of whether someone is a good programmer is to ask him about the shortcomings of the
tools he uses. Watch if he talks only about language constructs. He/she probably is a mediocre
programmer. Programming language environment (language + IDE + debugger + libraries) is as
important or more important then the language itself. Someone who does not understand that
flaws and limitation of their favourite language can be compensated by the environment, who
cannot view the language as a part of a larger development environment, is either unable to think
analytically and thus cannot be a good programmer, or is blindly partisan (i.e. a zealot) like many
participants of Perl vs. Python debate; but please note that even the worst participant of Perl vs.
Python debate is usually heads above participants of Linux vs. Windows advocacy wars...

There is a general trend toward more expressive, "very high level" solutions, the trend that drove
Perl into prominence to continue. It is this trend that launched LAMP (Linux-Apache-MySQL-
Perl/Python/PHP) tool set into prominence. Here neither Linux not MySQL play a significant
role. For this reason, LAMP should probably more correctly called WDS (Web server-database-
scripting language). Solaris, FreeBSD or even Windows can be used instead of Linux with the
same tool set. The same is true for MySQL, which is just one database out of several
possibilities.

11

With the maturity of the WEB that was the major driving force behind the scripting languages,
days of great surprises and surprise winners (as for example PHP victory over Perl in WEB site
scripting) are over. Despite being open source efforts, the development of scripting languages
now became a cruel, unforgiving area ruled by the merciless dynamics of the marketplace. Of
course, there are other valuable scripting languages like REXX, Icon, Scheme and Ruby and they
also deserve study and might be successfully used for certain projects.

The "big five" likely to stay are briefly described below.

JavaScript: main attraction is a very clean syntax and the ability to be used both as macro
language and as regular shell (actually JavaScript is an underutilized as shell in Windows
environment despite the fact that it is available for many years via WSH). It also has superior
object model. JavaScript is the only mainstream language that uses a prototype-based OO
implementation. With typical class-based OO languages like C++ and Java objects come in two
general types. Classes are templates that define set of variables and methods for the object,
and instances are populated classes -- "usable" objects with memory allocated and values of
variables filled. They cannot be extended dynamically at run time. In prototype-based OO the
structure of the object is dynamic at run time and new objects are mainly constructed via
cloning by copying the variables and methods of an existing object (its prototype). And the new
object can be modified dynamically (extended) without affecting its parent. Reverse is not
generally true.

Perl: is an interesting attempt to create "the next generation shell". It probably is the easiest to
learn and use for Unix system administrators who are already familiar with Unix shell
programming environment. Despite convoluted semantic, absence of co-routines, inability to use
pipes for connecting loops and subroutines, Perl is a great language with many interesting and
non-trivial ideas (for example very flexible set of control statements, powerful open statement
where one can use pipes, etc).

PHP: Pioneered higher level of integration with web server and database. PHP was the first
scripting language which successfully addressed the need for higher level integrated tool set for
Web site developers on Unix. It was designed explicitly as an integral part of the
Webserver/database/scripting language troika often called LAMP. This proved to be a very
powerful toolset, suitable for solving wide range of tasks. That's why PHP successfully deposed
already entrenched Perl in this particular area. This seamless integration with MySQL database
and Apache WEB-server really makes PHP an important pioneer in the scripting language world.
Although initially it was an open source server-side HTML-embedded scripting language, it is
evolving beyond its HTML roots into more advanced services like remote procedure calls.

Python: is probably the best of the breed of the important class of languages that support co-
routines (Icon supports co-routines too, but it is much less known). It has Google support so this
is the only scripting language with a multi-million-dollar corporation behind it. Python is now
compiled into Pycode. It's relatively easy (in comparison with Perl) to mix and match Pycode
and regular C or C++. In this area only TCL has more transparent "dual language" programming
model. Recenly, Sun hired Jruby developers so thing might change but still Python has the most
of corporate support so far. Microsoft’s recent IronPython implementation shows that it get some
traction outside traditional scripting community. Jython (JPython) has a unique advantage for
Java and is "politically correct" scripting language for a large enterprise development. It allows

12

to use Java explicitly as the "programming in the small" language. It has the ability to extend
existing Java classes, optional static compilation (allows creation of applets, and servlets), beans,
bean properties and makes the usage of Java packages much easier than any other scripting
language. Still the development felled behind mainstream Python and there is no significant
financial support to launch the project on a new level.

TCL: primary importance is that from the very beginning is was designed with dual-language
paradigm of programming in mind. It has the best integration with C (that was the design goal).
It promoted important view that we need to distinguish the use of scripting language as a glue for
components (shell style usage) and its use as an application macro-language. Along with REXX
TCL shares the achievement of being the first universal macro-language. And it gave us such a
wonderful tool as Expect. TCL was the first scripting language having a simple and clean
interface with C.

A programmer's real role is tool making for commonly used problem-solving tasks rather than
simply using the tools available in a programming language.

Let us embark on that role.

Choice of MATLAB for Program and Software Development

Computer languages are usually designed with the solution of a certain range of problems in mind.
The selection of the right language for the job at hand is of utmost importance. MATLAB is
generally used if the problem to be solved is conveniently represented by matrices, solved using
operations from linear matrix algebra, and presented using relatively simple two- and three-
dimensional graphics. Computing the solution to a family of linear equations, and representing,
manipulating, and displaying engineering data are perhaps the two best examples of problems for
which MATLAB is ideally suited.

Not only is the MATLAB programming language exceptionally straightforward to use (every data
object is assumed to be an array), but the MATLAB program code will be much shorter and
simpler than an equivalent implementation in C or FORTRAN or Java. MATLAB is therefore an
ideal language for creating prototypes of software solutions to engineering problems, and using
them to validate ideas and refine project specifications. Once these issues have been worked
out, the MATLAB implementation can be replaced by a C or Java implementation that enhances
performance, and allows for extra functionality – for example, a fully functional graphical user
interface that perhaps communicates with other software package over the Internet.

Since the early 1990s the functionality of MATLAB has been expanded with the development of
toolboxes containing functions dedicated to a specific area of mathematics or engineering.
Toolboxes are now provided for statistics, signal processing, image processing, neural nets, various
aspects of nonlinear and model predictive control, optimization, system identification, and partial
differential equation computations. MATLAB comes with an Application Program Interface
that allows MATLAB programs to communicate with C and FORTRAN programs, and vice
versa, and to establish client/server relationships between MATLAB and other software program.

13

The following is an updated hyperlinked list of available toolboxes for MATLAB.

 Statistics and Machine Learning Toolbox™

 Curve Fitting Toolbox™

 Control System Toolbox™

 Signal Processing Toolbox™

 Mapping Toolbox™

 System Identification Toolbox™

 Deep Learning Toolbox™

 DSP System Toolbox™

 Datafeed Toolbox™

 Financial Toolbox™

 Image Processing Toolbox™

 Text Analytics Toolbox™

 Predictive Maintenance Toolbox™

Program Development with M-Files

A common modeof using MATLAB is typing a command and getting the results. This mode of
operation is suitable only for the specification of the small problems, perhaps using a handful of
MATLAB commands or less. A much better problem-solving approach is to use a text editor to
write the commands in an M-file, and then ask MATLAB to read and execute the commands
listed in the M-file. This section describes two types of M-files. Script M-files correspond to a
main program in programming languages such as C. Function M-files correspond to a
subprogram or user written function in programming languages such as C. An M-file can
reference other M-files, including referencing itself recursively.

User-Defined Code and Software Libraries

Computer programs written in MATLAB are a combination of user-defined code – that is, the
computer program code we write ourselves – and collections of external functions located in
software libraries or MATLAB toolboxes. Software library functions are written by computer
vendors, and are automatically bundled with the compiler. Software libraries play a central role
in the development of C programs because the small number of keywords and operators in C is
not enough to solve real engineering and scientific problems in a practical way. What really
makes C useful is its ability to communicate with collections of functions that are external to the
user-written source code. This is where much of the real work in C programs takes place.

The ANSI C standard requires that certain libraries are provided with all implementations of
ANSI C. For example, the standard library contains functions for I/O, manipulation of character
strings, handling of run-time errors, dynamic allocation and de-allocation of memory, and
functions for C program interaction with the computer’s operating system. Mathematical formulae
are evaluated by linking a C program to the math library. Engineering application programs may

14

also communicate with graphical user interface, numerical analysis, and/or network
communications libraries.

Generally speaking, if there is a library function that meets your needs, by all means use it. The
judicious use of library functions will simplify the writing of your C programs, shorten the
required development time, and enhance C program portability. Software is said to be portable if
it can, with reasonable effort, be made to execute on computers other than on the one on which it
was originally written.

Scripts versus Functions in MATLAB

Scripts are m-files containing MATLAB statements. MATLAB ``functions'' are
another type of m-file. The biggest difference between scripts and functions is that
functions have input and output parameters. Script files can only operate on the
variables that are hard-coded into their m-file. As you can see, functions are much
more flexible. They are therefore more suitable for general purpose tasks that will be
applied to different data. Scripts are useful for tasks that don't change. They are also a
way to document a specific sequence of actions, say a function call with special
parameter values, that may be hard to remember.

There are more subtle differences between scripts and functions. A script can be
thought of as a keyboard macro: when you type the name of the script, all of the
commands contained in it are executed just as if you had typed these commands into
the command window. Thus, all variables created in the script are added to the
workspace for the current session. Furthermore, if any of the variables in the script file
have the same name as the ones in your current workspace, the values of those
variables in the workspace are changed by the actions in the script. This can be used
to your advantage. It can also cause unwanted side effects.

In contrast, function variables are local to the function. (The exception is that it's
possible to declare and use global variables, but that requires and explicit action by
the user.) The local scope of function variables gives you greater security and
flexibility. The only way (besides explicitly declared global variables) to get
information into and out of a function is through the variables in the parameter lists.

Scripts are useful for setting global behaviour of a MATLAB session. This includes
any terminal settings for a remote serial line, or setting the parameters of the Figure
window for a certain size plot.

Sometimes a script is a useful starting point in developing a MATLAB function.
When I'm starting to write a new function, but I'm uncertain about the command
syntax or the actual sequence of commands I want to use, I'll use the diary command
to record my tests. After I get the correct command sequence, I close the diary file and

15

open it with a text editor. This gives me a jump start on the function development
because I don't have to re-enter the commands. I just delete the incorrect lines, add the
function definition, and insert variables.

I've witnessed inexperienced MATLAB users who have become dependent on scripts
when functions would ultimately be easier to use. This typically occurs when
someone gets stuck on the function definition syntax, especially on the use of input
and output parameters. Rather than figure out how to properly pass parameters to the
function they repeatedly edit their script files to simulate the effect of variable
arguments. I hope this hypertext reference can help you avoid that fate.

There is nothing wrong with using scripts, of course. Scripts and functions are two
tools for working with MATLAB programming. Using the appropriate tool for the job
will help you achieve your analysis goals more easily.

Anatomy of a MATLAB function

MATLAB functions are similar to C functions or Fortran subroutines.

MATLAB programs are stored as plain text in files having names that end with the extension
``.m''. These files are called, not surprisingly, m-files. Each m-file contains exactly one
MATLAB function. Thus, a collection of MATLAB functions can lead to a large number of
relatively small files.

One nifty difference between MATLAB and traditional high-level languages is that MATLAB
functions can be used interactively. In addition to providing the obvious support for interactive
calculation, it also is a very convenient way to debug functions that are part of a bigger project.
MATLAB functions have two parameter lists, one for input and one for output. This supports
one of the cardinal rules of MATLAB programming: don't change the input parameters of a
function. Like all cardinal rules, this one is broken at times. My free advice, however, is to stick
to the rule. This will require you to make some slight adjustments in the way you program. In the
end this shift will help you write better MATLAB code.

Creating function m-files with a plain text editor

MATLAB m-files must be plain text files, i.e. files with none of the special formatting characters
included by default in files created by word-processors. Most word-processors provide the option
of saving the file as plain text, (look for a ``Save As...'' option in the file menu). A word-
processor is overkill for creating m-files, however, and it is usually more convenient to use a
simple text editor, or a ``programmer's editor''. For most types of computers there are several text
editors (often as freeware or shareware). Usually one plain text editor is included with the
operating system.

When you are writing m-files you will usually want to have the text editor and MATLAB open
at the same time. Since modern word-processors require lots of system RAM it may not even be

16

possible or practical (if you are working on a stand-alone personal computer) for you to use a
word-processor for m-file development. In this case a simple, text editor will be your only
option.

Function Definition

The first line of a function m-file must be of the following form.
function [output_parameter_list] = function_name(input_parameter_list)

The first word must always be ``function''. Following that, the (optional) output parameters are
enclosed in square brackets []. If the function has no output_parameter_list the square brackets
and the equal sign are also omitted. The function_name is a character string that will be used to
call the function. The function_name must also be the same as the file name (without the ``.m'')
in which the function is stored. In other words, the MATLAB function, ``foo'', must be stored in
the file, ``foo.m''. Following the file name is the (optional) input_parameter_list.

There can exactly be one MATLAB function per m-file.

Input and Output parameters

The input_parameter_list and output_parameter_list are comma-separated lists of MATLAB
variables.

Unlike other languages, the variables in the input_parameter_list should never be altered by the
statements inside the function. Expert MATLAB programmers have ways and reasons for
violating that principle, but it is good practice to consider the input variables to be constants that
cannot be changed. The separation of input and output variables helps to reinforce this principle.
The input and output variables can be scalars, vectors, matrices, and strings. In fact, MATLAB
does not really distinguish between variables types until some calculation or operation involving
the variables is performed. It is perfectly acceptable that the input to a function is a scalar during
one call and a vector during another call.
To make the preceding point more concrete, consider the following statement in MATLAB
terminal (screen) interface:

>> y = sin(x)

which is a call to the built-in sine function. If x is a scalar (i.e. a matrix with one row and one
column) then y will be a scalar. If x is a row vector, then y will be a row vector. If x is a matrix
then y is a matrix. (You should verify these statements with some simple MATLAB
calculations.)

This situation-dependence of input and output variables is a very powerful and potentially very
confusing feature of MATLAB.

Comment statements

17

MATLAB comment statements begin with the percent character, %. All characters from the % to
the end of the line are treated as a comment. The % character does not need to be in column 1.

Program Development Cycle

For a novice programmer, the two most important issues are likely to be about learning the
syntax of the language and becoming familiar with the step-by- step details of planning, writing,
compiling, running, testing, and documenting small programs.

The following are some basic steps:
1. Create source code file(s) using an editor.
2. Type source code
3. Review source code file to correct errors
4. Prepare input data
5. Execute program with direct input or from a file
6. Receive output

An M-file can be prepared using the MATLAB editor, or commonly used text editors such as
Notepad or WordPad After the list of commands has been typed into the file, it can be saved by
clicking on save as in the edit menu. The file can be executed from the command window by typing
theM-filename without the .m extension.

Consider the following example of program saved as a file named Newton.m:
% Calculate square root of a given number by Newton's method
% Read input
x=input('Please type a number for calculating square root:');
if x<=0
display('The number must be positive'); end;
% Initial guess.
xstart = x/2;
% Iteration loop to compute square root.
for i = 1:100
xnew = (xstart + x/xstart)/2; % new estimate of square root.
display(xnew);% print xnew.
if abs(xnew - xstart)/xnew < eps

break % on convergence.
end;
xstart = xnew; % update estimate of square root.
end

Running this program In MATLAB
>> Newton
% MATLAB response
Please type a number for calculating square root:20
xnew = 6
xnew = 4.6667

18

xnew = 4.4762
xnew = 4.4721
xnew = 4.4721
xnew = 4.4721

When MATLAB executes a program M-file for the first time, it will open the appropriate text M-
file and compile the function into a low-level representation that will be stored within
MATLAB. For those cases where an M-file function references other M-file functions, they will
also be compiled and placed in MATLAB’s memory.

A program M-file will terminate its execution when either a return statement is encountered or,
as is the case in this example, an end-of-file (EOF) is reached.

The MATLAB programs should include a good number of comments telling the reader in plain
English what is occurring.

For example, typing note the following command and MATLAB response.

>> help Newton
Calculate square root of a given number by Newton's method
Read input

Observations:

The example shown is simple. However, it contains important programming constructs, likely to
be used again and again in larger programs.

The first point to note is the line with % marker. This denotes a comment. A comment highlights
some aspect of the program code. The first few comment lines explain what the program is all
about. MATLAB displays these lines when the help command is used, as shown above.

The same program can be used with different inputs if the input data is read from a file or
directly from the keyboard as shown.

Two important constructs used in this program are the 'for' statement and the 'if' statement. The
first construct allows for iterations or looping, allowing execution of the statements in the loop
repeatedly. However, the 'break' statement allows one to jump out of the loop on a specified
condition.

Perhaps the most important feature is that of extending the language. At the MATLAB
command prompt ">>", we simply typed the name of the user written program as if it was a
built-in operation in MATLAB itself. Thus, the program can be written and executed within the
MATLAB as the natural extension of the MATLAB programming language.

More Examples of Programming and Software Development in MATLAB

Example 1: Area of a Trapezoid

19

Contents of traparea.m file:
function area = traparea(a,b,h)
% traparea(a,b,h) Computes the area of a trapezoid given
% the dimensions a, b and h, where a and b
% are the lengths of the parallel sides and % h is the distance between these sides
% Compute the area, but suppress printing of the result
area = 0.5*(a+b)*h;
MATLAB Session:

>> TrapArea=traparea(4,6,5)
TrapArea =

25

Example 2: Cartesian to Polar Coordinates
cartpolar.m contents:
function [r,theta]=cartpolar(x,y)
% cartrtpolar Convert Cartesian coordinates to polar coordinates
%
%[r,theta] = cart2plr(x,y) computes r and theta with
%
%r = sqrt(x^2 + y^2);
%
%theta = atan2(y,x);
r = sqrt(x^2 + y^2);
theta = atan2(y,x);

MATLAB Session:
>> [a,b]=cartpolar(3,4)
a =

5
b =
0.9273

Example 3: One of the fun example of writing a program often presented in a language on
programming is that of calculating the roots of the quadratic equation given by the formula:

20

Shown below is a simple rendering of this problem in the form of a solution that takes care of
various possibilities, including those of degenerate case as well those of real and complex roots
of a quadratic equation. Normally programming solutions are typed in text using a Notepad or
Wordpad.

Here are the contents of the program saved as "roots.m" in a directory of users choice in the
MATLAB path and changing to that directory by using a chdir command in MATLAB.

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
% roots.m -- Coefficients are read in from keyboard, answers printed on screen
%
% Note:
% The algorithm or procedure used here does not take into account
% possible loss of accuracy when two floating point numbers of almost equal size are subtracted.
%
% Print Welcome Message
display('Welcome to the Quadratic Equation Solver');
% Prompt User for Coefficients of Quadratic Equation
display('Please enter coefficients for the equation ax^2 + bx + c');
a=input('Enter coefficient a: ');
b=input('Enter coefficient b: ');
c=input('Enter coefficient c: ');
% Print Quadratic Equation to Screen
% Compute Roots of simplified equations : A equals zero
rootfound=0;
if a==0 & b==0,
display('Cannot solve for roots. Degenerate case');
rootfound=1;
end;
if a==0 & b~=0 & rootfound==0,
root1=-c/b;
display('Degenerate root');
root1
rootfound=1;
end;
% Compute Roots of Quadratic Equation : a not equal to zero
if rootfound==0
discriminant=b*b-4*a*c;
% Compute discriminant of quadratic equation.
if discriminant>=0, % Case for two real roots
root1=-b/2*a - sqrt(discriminant)/(2*a);
root1
root2=-b/(2*a) + sqrt(discriminant)/(2*a);
root2
else % Case for complex roots
display('Two complex roots');

21

display('Root 1 real part');
root1r=-b/(2*a)
display('Root 1 complex part')
root1c=sqrt(-discriminant)/(2*a)
display('Root 2 real part');
root2r=-b/(2*a)
display('Root 2 complex part')
root2c=-sqrt(-discriminant)/(2*a)
end;
end;
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
The actual interactions in MATLAB are:

>> roots
Welcome to the Quadratic Equation Solver
Please enter coefficients for the equation ax^2 + bx + c
Enter coefficient a: 1
Enter coefficient b: 1
Enter coefficient c: -12
root1 =

-4
root2 =

3

>> roots
Welcome to the Quadratic Equation Solver
Please enter coefficients for the equation ax^2 + bx + c
Enter coefficient a: 0
Enter coefficient b: 0
Enter coefficient c: -12
Cannot solve for roots. Degenerate case

>> roots
Welcome to the Quadratic Equation Solver
Please enter coefficients for the equation ax^2 + bx + c
Enter coefficient a: 4
Enter coefficient b: 2
Enter coefficient c: 4
Two complex roots
Root 1 real part
root1r =

-0.2500
Root 1 complex part
root1c =

0.9682
Root 2 real part

22

root2r =
-0.2500

Root 2 complex part
root2c =

-0.9682

>> roots
Welcome to the Quadratic Equation Solver
Please enter coefficients for the equation ax^2 + bx + c
Enter coefficient a: 0
Enter coefficient b: 4
Enter coefficient c: 4
Degenerate root
root1 =

-1

>> help roots
roots.m -- Coefficients are read in from keyboard, answers printed on screen
Note:

The algorithm or procedure used here does not take into account possible loss of accuracy when
two floating point numbers of almost equal size are subtracted.
Print Welcome Message

Example 4: A program for solutions of simultaneous in 1 or more variables.
Program Code:
%simult.m, Simultaneous Equations Solver
a=input('Please type data in the form of a square matrix of coefficients:\n');
b=input('Please type the corresponding column vector of constants:\n');
d=det(a);
if d~=0,
display('Determinant Not Zero, Solution Exists');
s=a\b;
display('Column vector s is the solution showing values of variables:');
s
else
display('Determinant Zero. Solution Does not exist');
end;

MATLAB Session
%Equation with two variables of the form ax+by=c
>> simult
Please type data in the form of a square matrix of coefficients:
[2 -2;7 -8]
Please type the corresponding column vector of constants:
[3; -2]
Determinant Not Zero, Solution Exists

23

Column vector s is the solution showing values of variables:
s =

14.0000
12.5000

%Equation with three variables of the form ax1+bx2+cx3=z
>> simult
Please type data in the form of a square matrix of coefficients:
[1 1 1; 0 2 5; 2 5 -1]
Please type the corresponding column vector of constants:
[6; -4; 27]
Determinant Not Zero, Solution Exists
Column vector s is the solution showing values of variables:
s =

5
3

-2

%Equation with five variables of the form ax1+bx2+cx3+dx4+ex5=z

>> simult
Please type data in the form of a square matrix of coefficients:
[0 2 -1 -2 0;-2 2 -3 -4 -8;0 0 1 3 5;1 0 1 2 6;0 2 -1 -1 3]
Please type the corresponding column vector of constants:
[-1; 0; 1; 0; -1]
Determinant Not Zero, Solution Exists
Column vector s is the solution showing values of variables:
s =

1.0000
0.5000
-1.0000
1.5000
-0.5000

Object-Oriented Programming in MATLAB

The program examples introduced so far have made use of procedural programming. In
procedural programming, design of solution focuses on the steps to be executed for achieving a
desired result. Typically, one represents data as individual variables or fields of a structure.
Operations are implemented as functions that take the variables as arguments. Programs usually
call a sequence of functions, each one of which is passed data, and then returns modified data.
Each function performs an operation or many operations on the data.

Object-oriented program design involves Identifying the components of the system or
application to be used in developing a solution, based on an analysis and identification of
patterns that may be used repeatedly.

24

Each component type is defined as a class with desired attributes called properties and behaviour
called methods. A class may also be designed to recognize events representing changes in an
object instance such as modification of data, execution of a method, querying or setting a
property value, or destruction of an object.

A class describes a set of objects with common characteristics. Objects are specific instances of a
defined class. The values contained in an object's properties are what make an object different
from other objects of the same class. The functions defined by the class (called methods) are
what implement object behaviours that are common to all objects of a class.

Advantages of Object-Oriented Programming
1. Code Reuse and Recycling: Objects created for Object-oriented Programs can easily be

reused in other programs.
2. Encapsulation: Once an Object is created, knowledge of its implementation is not

necessary for its use. In older programs, coders needed understand the details of a piece
of code before using it (in this or another program). Objects have the ability to hide
certain parts of themselves from programmers. This prevents programmers from
tampering with values they shouldn't. Additionally, the object controls how one interacts
with it, preventing other kinds of errors.

3. Design Benefits: Large programs are very difficult to write. Object-oriented Programs
force designers to go through an extensive planning phase, which makes for better
designs with less flaws. In addition, once a program reaches a certain size, Object
Oriented Programs are actually easier to program than non-object-oriented ones.

4. Software Maintenance: Programs are not disposable. Legacy code must be dealt with on
a daily basis, either to be improved upon (for a new version of an exist piece of software)
or made to work with newer computers and software. An object-oriented Program is
much easier to modify and maintain than a non-object-oriented Program. So, although a
lot of work is spent before the program is written, less work is needed to maintain it over
time.

Some disadvantage of Object-Oriented Programming

1. Size: Object Oriented programs are much larger than other programs. In the early days of
computing, space on hard drives, floppy drives and in memory was at a premium. Today
we do not have these restrictions.

2. Effort: Object Oriented programs require a lot of work to create. Specifically, a great deal
of planning goes into an object-oriented program well before a single piece of code is
ever written. Initially, this early effort was felt by many to be a waste of time. In addition,
because the programs were larger (see above) coders spent more time actually writing the
program.

3. Speed: Object Oriented programs are slower than other programs, partially because of
their size. Other aspects of Object-oriented Programs also demand more system
resources, thus slowing the program down.

4. In recent years, however, improvements in computer performance have made restrictions
about size and speed inconsequential. The question of human effort still exists, however;
many novice programmers do not like Object-oriented Programming because of the great
deal of work required to produce minimal results.

25

When Should One Create Object-Oriented Programs?

You can implement simple programming tasks as simple functions. However, as the magnitude
and complexity of your tasks increase, functions become more complex and difficult to manage.
As functions become too large, you can break them into smaller functions and pass data from
one to function to another. However, as the number of functions becomes large, designing, and
managing the data passed to functions becomes difficult and error prone.

Understand a Problem in Terms of Its Objects

Thinking in terms of objects is simpler and more natural for some problems. Think of the nouns
in your problem statement as the objects to define and the verbs as the operations to perform.
Consider the design of classes to represent money lending institutions (banks, mortgage
companies, individual money lenders, and so on). It is difficult to represent the various types of
lenders as procedures. However, you can represent each one as an object that performs certain
actions and contains certain data. The process of designing the objects involves identifying the
characteristics of a lender that are important to your application.

The MATLAB language defined objects are used for programming solutions in MATLAB.
Consider the following example of a file called Ex1Class.m save in the current directory:

% Ex1Class.m represents a class dealing with numeric data.
classdef Ex1Class

properties
Value

end
methods

% Class constructor method
function obj = Ex1Class(val)

if nargin == 1
if isnumeric(val)

obj.Value = val;
else

error('Value must be numeric')
end

end
end

% Class roundOff method
function r = roundOff(obj)

r = round([obj.Value],2);
end
function r = multiplyBy(obj,n)

r = [obj.Value] * n;
end

% Class plus method for adding two inout values of Ex1Class instances

26

function r = plus(o1,o2)
r = [o1.Value] + [o2.Value];

end
end

end

Use of the defined class in a MATLAB Session:
>> a=Ex1Class
a =

Ex1Class with properties:
Value: []

>> a(1)=Ex1Class(5.678)
a =

Ex1Class with properties:
Value: 5.6780

>> a(2)=Ex1Class(9.123)
a =

1x2 Ex1Class array with properties:
Value

>> a(3)=Ex1Class(2.456)
a =

1x3 Ex1Class array with properties:
Value

>> sum=plus(a(1),a(3))
sum =

8.1340
>> prod=multiplyBy(a,5)
prod =

43.5000

>> roundOff(a)
ans =

5.6800 9.1200 2.4600

>> a(1)
ans =

Ex1Class with properties:
Value: 5.6780

% Note that the roundOff displayed rounded values without affecting the stored value

% The following are some built in functions provided MATLAB for probing a class

27

>> help Ex1Class %shows the beginning comments in the class definition
Ex1Class.m represents a class dealing with numeric data.

>> class Ex1Class % class of object
ans =
char

>> isobject(a) % Is input is MATLAB object?
ans =

1
>> methods Ex1Class % Provide a list of all methods defined in the class
Methods for class Ex1Class:
Ex1Class multiplyBy plus roundOff

>> properties Ex1Class %Provide the names of class properties
Properties for class Ex1Class:

Value

Notes on some object-oriented programming conventions:

Class names should be nouns in UpperCamelCase, with the first letter of every word capitalised.
Use whole words — avoid acronyms and abbreviations (unless the abbreviation is much more
widely used than the long form, such as URL or HTML).

Methods should be verbs in lowerCamelCase or a multi-word name that begins with a verb in
lowercase; that is, with the first letter lowercase and the first letters of subsequent words in
uppercase.

Local variables, instance variables, and class variables are also written in lowerCamelCase.
Variable names should not start with underscore (_) or dollar sign ($) characters, even though
both are allowed.

Variable names should be short yet meaningful. The choice of a variable name should
be mnemonic — that is, designed to indicate to the casual observer the intent of its use. One-
character variable names should be avoided except for temporary "throwaway" variables.
Common names for temporary variables are i, j, k, m, and n for integers; c, d, and e for
characters.

Constants should be written in uppercase characters separated by underscores. Constant names
may also contain digits if appropriate, but not as the first character.

Systematic Approach to Design and Implementation of Classes:
An Example

This example discusses how to approach the design and implementation of a class. The
objective of this class is to represent a familiar concept (a bank account). However, one

28

can apply the same approach to most class designs.

To design a class that represents a bank account, first determine the elements of data
and the operations that form your abstraction of a bank account.

For example, a bank account has:
• An account number
• An account balance
• A status (open, closed, etc.)

Also needed are certain operations on a bank account:
• Create an object for each bank account
• Deposit money
• Withdraw money
• Generate a statement
• Save and load the BankAccount object

If the balance is too low there is an attempt to withdraw money, the bank account
broadcasts a notice. When this event occurs, the bank account broadcasts a notice to
other entities that are designed to listen for these notices. In this example, a simplified
version of an account manager program performs this task.

An account manager program may determine the status of all bank accounts. This program
monitors the account balance and assigns one of three values:
• open — Account balance is a positive value
• overdrawn — Account balance is overdrawn, but by $200 or less.
• closed — Account balance is overdrawn by more than $200.

These features define the requirements of the BankAccount and AccountManager classes.
Included only is functionality required to meet specific objectives. Support may be provided by
special types of accounts as subclass of BankAccount and adding more specific features to the
subclasses. AccountManager class may be required to support new account types.

Specifying Class Components
Classes store data in properties, implement operations with methods, and support notifications
with events and listeners. Here is how the BankAccount and AccountManager classes define
these components.

Class Data

The class defines the properties to store the account number, account balance, and the
account status:
• AccountNumber — A property to store the number identifying the specific account.
MATLAB assigns a value to this property when one creates an instance of the class. Only
BankAccount class methods can set this property. The SetAccess attribute is private.

29

• AccountBalance — A property to store the current balance of the account. The class operation
of depositing and withdrawing money assigns values to this property.

Only BankAccount class methods can set this property. The SetAccess attribute is private.
• AccountStatus — The BankAccount class defines a default value for this property.

The AccountManager class methods change this value whenever the value of the ccountBalance
falls below 0. The Access attribute specifies that only the AccountManager and BankAccount
classes have access to this property.
• AccountListener — Storage for the InsufficentFunds event listener. Saving a BankAccount
object does not save this property because you must recreate the listener when loading the object.

Class Operations
The methods implement the operations defined in the class formulation:
• BankAccount — Accepts an account number and an initial balance to create an
object that represents an account.
• deposit — Updates the AccountBalance property when a deposit transaction occurs
• withdraw — Updates the AccountBalance property when a withdrawal transaction occurs
• getStatement — Displays information about the account
• loadobj — Recreates the account manager listener when you load the object from a MAT-file.

Class Events
The account manager program changes the status of bank accounts that have negative balances.
To implement this action, the BankAccount class triggers an event when a withdrawal results in
a negative balance. Therefore, the triggering of the InsufficientsFunds event occurs from within
the withdraw method. To define an event, specify a name within an events block. Trigger the
event by a call to the notify handle class method. Because InsufficientsFunds is not a predefined
event, one can name it with any string and trigger it with any action.

BankAccount Class Implementation

It is important to ensure that there is only one set of data associated with any object of
a BankAccount class. It would not be appropriate to have independent copies of the object that
could have, for example, different values for the account balance. Therefore, there is a need to
implement the BankAccount class as a handle class. All copies of a given handle object refer to
the same data.

BankAccount Class Synopsis
Bank Account Class Comments
classdef BankAccount < handle Handle class because there should be only one

copy of any instance of BankAccount
properties (SetAccess = private)

AccountNumber
AccountBalance

end

AccountStatus propert access by Account
Manager class methods. AccountNumber and
AccountBalance properties have private set
access

properties (Transient) AccountListener property is transient so the

30

AccountListener
end

listener handle is not saved.

events
InsufficientFunds
end

Class defines event called InsufficentFunds.
withdraw method triggers event when account
balance becomes negative.

Methods
function BA =
BankAccount(AccountNumber,InitialBalance)

BA.AccountNumber =
AccountNumber;
BA.AccountBalance = InitialBalance;
BA.AccountListener =
AccountManager.addAccount(BA);

End

function deposit(BA,amt)
BA.AccountBalance =
BA.AccountBalance + amt;
if BA.AccountBalance > 0
BA.AccountStatus = 'open';
end

end

Constructor initializes property values with
input arguments.

AccountManager.addAccount is static method
of AccountManager class. Creates listener for
InsufficientFunds event and stores listener
handle in
AccountListener property.

Deposit adjusts value of AccountBalance
property

If AccountStatus is closed and subsequent
deposit brings AccountBalance into positive
range, then AccountStatus is reset to open.

function withdraw(BA,amt)
if
(strcmp(BA.AccountStatus,'closed')&&
BA.AccountBalance < 0)
disp(['Account
',num2str(BA.AccountNumber),...
' has been closed.'])
return

end
newbal = BA.AccountBalance - amt;
BA.AccountBalance = newbal;
if newbal < 0

notify(BA,'InsufficientFunds')
end

end

Updates AccountBalance property. If value of
account balance is negative as result of the
withdrawal, notify triggers InsufficentFunds
event.

function getStatement(BA) Display selected information about the

31

disp('-------------------------')
disp(['Account:
',num2str(BA.AccountNumber)])
ab =
sprintf('%0.2f',BA.AccountBalance);
disp(['CurrentBalance: ',ab])
disp(['Account Status:
',BA.AccountStatus])
disp('-------------------------')

end
end
methods (Static)

account.

End of ordinary methods block.
function obj = loadobj(s)
if isstruct(s)

accNum = s.AccountNumber;
initBal = s.AccountBalance;
obj = BankAccount(accNum,initBal);

else
obj.AccountListener =
AccountManager.addAccount(s);

end
end
end
end

loadobj method:
• If the load operation fails, create the object
from a struct.
• Recreates the listener using the newly created
BankAccount object as the source.

End of static methods block

End of classdef

classdef BankAccount < handle
properties (Access = ?AccountManager)

AccountStatus = 'open';
end
properties (SetAccess = private)

AccountNumber
AccountBalance

end
properties (Transient)

AccountListener
end
events

InsufficientFunds
end
methods

function BA = BankAccount(accNum,initBal)
BA.AccountNumber = accNum;
BA.AccountBalance = initBal;
BA.AccountListener = AccountManager.addAccount(BA);

32

end
function deposit(BA,amt)

BA.AccountBalance = BA.AccountBalance + amt;
if BA.AccountBalance > 0
BA.AccountStatus = 'open';

end
end

function withdraw(BA,amt)
if (strcmp(BA.AccountStatus,'closed')&& BA.AccountBalance <= 0)

disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
return

end
newbal = BA.AccountBalance - amt;
BA.AccountBalance = newbal;
if newbal < 0

notify(BA,'InsufficientFunds')
end

end
function getStatement(BA)

disp('-------------------------')
disp(['Account: ',num2str(BA.AccountNumber)])
ab = sprintf('%0.2f',BA.AccountBalance);
disp(['CurrentBalance: ',ab])
disp(['Account Status: ',BA.AccountStatus])
disp('-------------------------')

end
end
methods (Static)

function obj = loadobj(s)
if isstruct(s)

accNum = s.AccountNumber;
initBal = s.AccountBalance;
obj = BankAccount(accNum,initBal);

else
obj.AccountListener = AccountManager.addAccount(s);

end
end

end
end
..
BankAccount class requires AccountManager class as follows:

classdef AccountManager
methods (Static)

function assignStatus(BA)
if BA.AccountBalance < 0

if BA.AccountBalance < -200
BA.AccountStatus = 'closed';

33

else
BA.AccountStatus = 'overdrawn';

end
end

end
function lh = addAccount(BA)

lh = addlistener(BA, 'InsufficientFunds', ...
@(src, ~)AccountManager.assignStatus(src));

end
end

end

Each class is distinct and each class has its description in a separate file.
Contents of BankAccount class in file BankAccount.m:

%BankAccount.m - BankAccount class. It requires AccountManager class.
classdef BankAccount < handle

properties (Access = ?AccountManager)
AccountStatus = 'open';

end
properties (SetAccess = private)

AccountNumber
AccountBalance

end
properties (Transient)

AccountListener
end
events

InsufficientFunds
end
methods

function BA = BankAccount(accNum,initBal)
BA.AccountNumber = accNum;
BA.AccountBalance = initBal;
BA.AccountListener = AccountManager.addAccount(BA);

end
function deposit(BA,amt)

BA.AccountBalance = BA.AccountBalance + amt;
if BA.AccountBalance > 0

BA.AccountStatus = 'open';
end

end
function withdraw(BA,amt)

if (strcmp(BA.AccountStatus,'closed')&& BA.AccountBalance <= 0)
disp(['Account ',num2str(BA.AccountNumber),' has been closed.'])
return

end
newbal = BA.AccountBalance - amt;

34

BA.AccountBalance = newbal;
if newbal < 0

notify(BA,'InsufficientFunds')
end

end
function getStatement(BA)

disp('-------------------------')
disp(['Account: ',num2str(BA.AccountNumber)])
ab = sprintf('%0.2f',BA.AccountBalance);
disp(['CurrentBalance: ',ab])
disp(['Account Status: ',BA.AccountStatus])
disp('-------------------------')

end
end
methods (Static)

function obj = loadobj(s)
if isstruct(s)

accNum = s.AccountNumber;
initBal = s.AccountBalance;
obj = BankAccount(accNum,initBal);

else
obj.AccountListener = AccountManager.addAccount(s);
end

end
end

end

Contents of BankManager class in BankManager.m file:
% AccountManager.m - AccountManager class description
classdef AccountManager

methods (Static)
function assignStatus(BA)

if BA.AccountBalance < 0
if BA.AccountBalance < -200

BA.AccountStatus = 'closed';
else

BA.AccountStatus = 'overdrawn';
end

end
end

function lh = addAccount(BA)
lh = addlistener(BA, 'InsufficientFunds', ...

@(src, ~)AccountManager.assignStatus(src));
end

end
end

35

In MATLAB Session
>> BA1=BankAccount(101,500)
BA1 =

BankAccount with properties:
AccountNumber: 101
AccountBalance: 500

AccountListener: [1x1 event.listener]

>> getStatement(BA1)

Account: 101
CurrentBalance: 500.00
Account Status: open

>> withdraw(BA,100)
Undefined function or variable 'BA'.

>> withdraw(BA1.100)

>> getStatement(BA1)

Account: 101
CurrentBalance: 400.00
Account Status: open

>> withdraw(BA1,500)
>> getStatement(BA1)

Account: 101
CurrentBalance: -100.00
Account Status: overdrawn

Account: 101
CurrentBalance: -200.00
Account Status: overdrawn

>> withdraw(BA1,100)
>> withdraw(BA1,100)
Account 101 has been closed.

36

A Brief on Advanced Software Development in MATLAB

The high-level language in MATLAB® includes features for developing and sharing code, such
as error handling, object-oriented programming (OOP), and a unit testing framework. You also
can integrate MATLAB applications with those written in other languages.

For example, a MEX-file is a function, created in MATLAB, that calls a C, C++, or Fortran
subroutine. To call a MEX-file, use the name of the file, without the file extension. The MEX-
file contains only one function or subroutine, and its name is the MEX-file name. The file must
be on your MATLAB path.

Binary MEX files are subroutines produced from C/C++ or Fortran source code. They behave
just like MATLAB® scripts and built-in functions. While scripts have a platform-independent
extension .m, MATLAB identifies MEX files by platform-specific extensions. The following
table lists the platform-specific extensions for MEX files.

The following are MEX-File extensions:

Platform Binary MEX-File Extension
Linux® (64-bit) mexa64
Apple Mac (64-bit) mexmaci64
Microsoft® Windows® (32-bit) mexw32
Windows (64-bit) mexw64

Binary MEX file on a platform cannot be use if on a different platform. It must be recompiled
using the source code on the platform that will use MEX file.

Sources:
Chisnall, David, A Brief History of Programming, Part 1 & 2

http://www.informit.com/articles/article.aspx?p=1077906
http://www.informit.com/articles/article.aspx?p=1080343

Bezroukov, NNikolai, Scripting Languages as a Step in Evolution of Very high Level Languages
http://www.softpanorama.org/People/Scripting_giants/scripting_languages_as_vhll.shtml

Robat, Cornelius, Introduction to Software History
http://www.thocp.net/software/software_reference/introduction_to_software_history.htm

https://en.wikipedia.org/wiki/Computer_programming
A u s t i n , M a r k . A . , E n g i n e e r i n g P r o g r a m m i n g i n M A T L A B : A P r i m e r , University of
Maryland, 2000

h t t p : / / w w w . e n g . u m d . e d u / ~ a u s t i n / w i l e y . d / b o o k . p d f
http://www.mathworks.com/help/matlab/object-oriented-programming.html
http://www.mathworks.com/help/matlab/software-development.html
https://www.mathworks.com/help/pdf_doc/matlab/matlab_oop.pdf
http://www.mathworks.com/help/matlab/object-oriented-programming.html

37

http://www.mathworks.com/help/matlab/software-development.html

