Curve Fitting Story

Curvefitting is the process of constructing a curve, or mathematical function, that has the best fit to a series

of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the
dataisrequired, or smoothing, in which a"smooth" function is constructed that approximately fits the data. A related
topic isregression anaysis, which focuses more on questions of statistical inference such as how much uncertainty is
present in acurve that is fit to data observed with random errors. Fitted curves can be used as an aid for data
visualization, to infer values of afunction where no data are available, and to summarize the relationships among two or
more variables. Extrapolation refers to the use of afitted curve beyond the range of the observed data, and is subject to
adegree of uncertainty since it may reflect the method used to construct the curve as much asiit reflects the observed
data.

Curvefitting is a powerful and widely used analysistools. Curve fitting examines the relationship, f (x, y) between one
or more predictors (independent variables x) and a response variable (dependent variable y), with the goal of defining a
"best fit" model of the relationship.

Imagine having to describe the results of an experiment by showing pages after pages of raw and derived data.
Not only would a careful study of the data be tedious and unlikely to be used by any but the most
dedicated, the data trends would be most difficult to discern. It may not be sufficient to know that as the
data for the controlled variable increases, so does data for the output variable. How much of an increaseis
important? What is the shape of the increase? A mathematical expression can tell this at a glance.

Mathematical equations remove undesired variations from data. Sources of these variations (often called
‘noise’ or ‘artifacts’) can range from strictly random thermodynamic events to systematic effects of
electrical power-line magnetic and electrical fields. Everywhere in the building where | work, signalsfrom a
strong local radio station appear on sensitive el ectronic equipment. This adds considerably to the noise seen
on our results, and strengthens the advantages of curve-fitting.

Mathematical equations can be used to derive theoretical implications concerning the underlying



principles relating variables to one another. Biologists often express these relationships in exponential
terms. Sometimes they use hyperbolas. Each of these carries with it afundamental notion concerning the
connection between one variable and another. Thereis confidence that the rel ationship means more than just
ablind attempt at describing data, and that interpolated or extrapolated val ues can be obtained without the
expectation of too much error.

This brings us to two very important uses of the fitted curve. Interpolation is the process of obtaining a result
which would likely have been obtained if the input variable would have been held at some particular value.

Curvefitting differs from the statistical process of regression in that the latter is often the most rational way of
achieving the former. In curvefitting, agreater emphasisis placed on the form of the curve which isto be used
to match the data, whereas regression often is applied without much thought given to curve selection. In some
respects, then, both processes are complementary.

Curvefitting can be viewed as an overall process for which gatistica procedures can sometimes be helpful. Often
these procedures are blindly used without thorough investigation of the data, experimental procedures used, and
inferences to be drawn. When this happens, statistical procedures can actually lead to misleading results.

One cannot overstress the importance of plotting the data before proceeding. One must see what the data
look like before a decision is made to treat the data one way or another.

I n sear ch of relationships

1. Independence (Non-Relationship)
Take alook at the curve shown below. No matter what value the x variable takes on the curve, the y variable stays the
same.



Thisisaclassic example of arelationship called independence. Two quantities are independent if one has no effect on
the other. The curveisahorizontal, straight line represented by the general form equation:
y = k wherek is a constant.

A suitable conclusion statement from such arelationship would be that: y isindependent of x; y does not depend on x.
y is constant for all values of x; y is not affected by x; y and x are independent. There is no need to look for afit
between x and y because y values do not depend on x values.

For example,

Freefall acceleration is independent of mass. Heavy objectsfall just as fast as light objects in the absence of air
resistance.

The period of asimple pendulum does not depend on its mass. Simple pendulumsthat are identical in all
respects except for the weight of the mass on the end will swing back and forth in an identical manner.

The speed of light in avacuum cis constant for all values of v, the speed of the reference frame. No matter how
I move around, the speed of light in a vacuum always stays the same.

The force of dry friction is not affected by the area of the two surfaces in contact. Dragging a box on its bottom
or its side results in the same friction force.

Mass and location are independent. If afrozen turkey has amass of 10 kg in New York it'll have amass of 10 kg
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in New Jersey, in New Delhi, on Mount Everest, in an airplane, in orbit, on the surface of the moon, in the
Andromeda Galaxy, in.... Well, you get the idea.

Independence rel ationships can be both boring and profound. Boring when we realize there's no link between the two
quantities. Profound when we realize we've identified a fundamental principle or underlying concept of great
significance. The independence of the speed of light and the speed of areference frame is one of these statements. The

speed of light is afundamental constant — one of three or four in physics.
direct

2. Straight Dependence Relationship

Now take alook at this curve.

|||||||||||||
|||||||||||||||

Asthe x variable increases, the y variable increases too. But there are alot of curvesthat do this. What makes this one
unique? What distinguishesit from all the other curves that increase (as the mathematicians say) monotonically? The
key isin the shape — a straight, non-horizonta line that runs through the origin. With this particular shape, something
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special happens.

Pick a point on the line and note its coordinates. Double the value of the x variable and see how the y variable responds.
The new value of y should also have doubled. Try it again. Only thistime, cut the x variablein half. They variable
should have responded in the same manner; that is, it too should be cut in half. Whatever x does, y does the same. This
illustrates the simplest, nontrivial form of proportionality — direct proportionality. Two quantities are

directly proportional if their ratio is a constant.

y/x=Kk, rearranging this definition gives us the general form equation, y = kx, where k is the constant of proportionality,
which everyone should recognize as the slope of astraight line in the x,y plane.

A suitable conclusion statement from such arelationship would be that
y isdirectly proportiona to x; y varies directly with x; y and x are directly proportional; y o x

For example

e Regular wages are directly proportiona to the number of hours worked. Forty hours of work pays four times as
much as ten hours of work. One hour of work pays one-tenth as much as ten hours of work.

e Weight varies directly with mass. Three times more mass means three times more weight, too. Likewise, half the
mass means half the weight.

e Distance and time are directly proportional when speed is constant. Driving for two hours gets you twice as far
away as one hour would, but only half asfar as four hours.

e Warning! Don't think that directly proportional means "when one increases, the other increases’ or "when one
decreases, the other decreases’. It's amore specific kind of relationship than that. Here's a contrary example. A
worker who puts in 60 hours on the job works 1.5 times as much as one who puts in 40 hours.

60 hr/40 hr=1.5
But workers working making more than 40 hours aweek in the US are supposed to be paid at an overtime rate, whichis
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typically one and a half times their regular wage. Thus the 60 hour-a-week worker earns 1.75 times as much as the
40 hour-a-week worker.
(1x40 regular hours + 1.5x20 overtime hours)/(1* 40 regular hours)=1.75

Since the changes are not the same, 1.75 # 1.5, the wages earned in this example are not directly proportional to the
hours worked. A direct relationship is much more special than the general statement, "when one increases, the other
increases’. It's more like, "when one changes by a certain ratio, the other changes by the sameratio".

3. Inverse Relationship

|||||||||||||||

Moving on. Take alook at this curve. This shapeis caled arectangular hyperbola— a hyperbolasince it
has asymptotes (lines that the curve approaches, but never crosses) and rectangular since the asymptotes are
the x and y axes (which are at right angles to one another).

Some say that this curve shows the opposite behavior of the previous one; that is, as the x variable increases,



they variable decreases and as the x variable decreases, they variable increases. But like the previous curve there's a
more specific kind of change that takes place. Check it out for yourself. Pick a convenient point on the curve. Note the
coordinate values at this point. Now double the x coordinate and see what happensto the y coordinate. It's cut in half.
Now try the reverse. Pick apoint on the curve and cut its x coordinate in half. They coordinate is now doubleits
original value. Triple x and you get one-third of y. Reduce x to one-fourth and watch y increase by four. However you
change one of the variables the other changes by the inverse amount. This illustrates another ssmple kind of
proportionality — inverse proportionality. Two quantities are said to be inversely proportional if their product isa
constant.

X*y =k

Rearranging this definition gives us the general form equation:
y=k/x

where k is the constant of proportionality.

A suitable conclusion statement from such arelationship would be that:
y isinversely proportional to x; y variesinversely as x; y and x are inversely proportiona; y « 1/x or y o« x—1.

For example:

e Thetime needed to finish ajob varies inversely as the number of workers. More workers means less timeto finish a
job. (Twice as many means it takes half the time.) Fewer workers means it takes longer. (If only one-third of the
normal number of workers show up, the job will take three times longer.)

e Thevolume of amass of gasisinversely proportional to the pressure acting on it. Place aballoon in a hyperbaric
chamber and doubl e the pressure — the balloon will squash to half its original volume. Place the balloon in a
vacuum chamber and decrease the pressure to one-tenth atmospheric — the balloon will expand ten timesin volume
(assuming it doesn't break first).



4. Squar e Relationship

|

What do we have here? Why it's a parabola with its vertex at the origin. Y ou get this kind of curve when one quantity is
proportional to the square of the other. Since this parabolais symmetric about the y-axis that makes it a vertical

parabola and we know that it's the horizontal variable that gets the square. Here's the general form equation for this kind
of curve:

y = kx?
A suitable conclusion statement from such arelationship would be that:
y is proportional to the square of x; y « x?;



For example:

e Thedistance traveled by an object dropped from rest is proportional to the square of time. How long does it take to
fall one meter? Double that time and you'll fall 4 m, triple it and you'll fall 9 m, and so on.

e Therate at which heat is produced by an electric circuit is proportional to the square of the current. Doubling the
current in atoaster oven quadruplesits heat output. Reduce the current in the CPU of a computer to half its previous
value and you'll reduce the heat output to one-quarter its previous value.

5. Squar e Root Relationship

Here's another parabolawith its vertex at the origin. This one's tipped on its side and is symmetric about the x-axis. For
ahorizontal parabolalike this one, it's the vertical variable that gets the square. The general form equation for thiskind



of curveis:
y =kVx

A suitable conclusion statement from such a relationship would be that:
y is proportional to the square root of x; y o \x or y oc x¥%

For example:

e Speedisproportional to the square root of distance for freely falling objects. How fast is an object moving after it
has fallen one meter? At four metersit'll have double that speed; at nine meters, triple; sixteen, quadruple; and so
on.

Something to remember — the square root is not an explicit function. It isn't single-valued. Every number has two
square roots: one positive and one negative. Typical curve fitting software disregards the negative root, which iswhy |
only drew half a parabola on the diagram above. Something else to remember — the domain of the squareroot is
restricted to non-negative values. That's afancy way of saying you can't find the square root of a negative number (not
without expanding your concept of "number”, that is).

6. Power Relationship

So far, we have five curves and five general form equations:
* independent y=k

o direct y = kx

e inverse y = k/x
* square y = kx?
* square root y = k\x

They have three common components.
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X= an independent variable (or explanatory variable)

y= a dependent variable (or response variable)

k= aconstant of proportionality

and one component that varies:

n= power of the independent variable

We could rewrite these general equations with two variables, a constant of proportionality and a power like this...
« independent y = kx°

« direct y = kxt
* inverse y =kx1?
* square y = kx?
* square root y = kx*

We could even go so far as to write a general form equation for awhole family of equations:
y = kx"

Any two variables that are related to one another by an equation of this form are said to have a power relation between
them.

power general form description  appearance

0 y =k independent  horizontal, straight line

1 y = kx direct non-horizontal straight line through the origin
2 y = kx? square vertical parabolawith vertex at the origin

3 y = kx3 cube
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-1 y = k/x inverse rectangular hyperbola

-2 y=kix? inverse square

-3 y = k/x3 inverse cube

Y y = kvx squareroot  horizontal parabolawith vertex at the origin
A y = k¥/x cube root

Power relationships summarized

7. SimpleLinear Relationship

Description: A combination of constant and direct. A fixed amount is added (or subtracted) at regular intervals.
General form.

y=ax+b

A suitable conclusion statement from such arelationship would be that:
y islinear with x; y varies linearly with x; y isalinear function of x;

Appearance: any straight line, regardless of slope or y-intercept
Example(s): utility bills (there's always a service charge)

Engineering Applications of Simple Linear Regression (Curve Fitting)

The least-squares technique for finding alinear regression of theform y = ax + b is critical in engineering,
as al sampled data always has an error associated with it, and while models may suggest that the response
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of a system should be linear, the actual output may less obviously be so, for any number of reasons,
including limitations in measuring equipment, random errors and fluctuations, and unaccounted variables.

The method of least squares results in afast and efficient manner of finding the best fitting straight line
which may pass through given data, yielding approximations of unknown coefficients.

For example, it iswell known that an ideal resistor islinear in its response. This, however, may be less
true in practice. Simply using one reading with one current to approximate the resistance of aresistor has
two problems:

« We cannot give any estimate asto what the error of our approximation is, and
« Theresistor may not be linear for the given range of currents, hence our approximation may be
completely inaccurate because the model of an ideal linear resistor does not even apply.

Using multiple readings and linear regression gives us the ability to make much more definitive statements
about the accuracy of our approximation and the applicability of our model.

8. Quadratic Relationship

Description: A combination of square, direct, and constant.
General Form

y=ax’+bx+c

A suitable conclusion statement from such a relationship would be that:
y is quadratic with x; y varies quadratically with x; y is a quadratic function of x.
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Appearance: A vertical parabolawhen graphed. It's vertex can be anywhere. It could a so be flipped upside down.
Example(s): distance during uniform acceleration

9. Polynomial Relationship

Description: A combination of a constant, direct, square, cube, .... Kegp going as far as you wish.
Genera form.

y=a+bx+ox+dx3+...
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A suitable conclusion statement from such arelationship would be that:
e y can be approximated by an nth order polynomial of x.
e Annth order polynomia of x wasfittoy.

Appearance: any non-periodic function without asymptotes
Example(s): Polynomial functions can be used to approximate many continuous, single-valued curves

order general form name
0 y=a constant
1 y =a+ bx linear
2 y =a+ bx + cx? quadratic

3 y=a+bx +cx?+ dx® cubic




4 y=a+bx+cx?+dx3+ex? quartic

5 y =a+bx +ox? + dx® + ex? + fx° quintic
n

n y=ax’+ axt + ax®+ax®+... =X axi nthorder polynomial
i=1

Polynomial relationships summarized

10. Exponential Growth Relationship

Description:
General form.
y= ar]bx
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A suitable conclusion statement from such a relationship would be that:
y increases exponentialy with x; y grows exponentially with x; y o« n*

Theratio of successive iterationsis a constant. The quantity is multiplied by a fixed amount at regular intervals.
Appearance: asymptotic with negative x-axis, followed by runaway expansion
Example(s): unrestricted population growth, the magic of compound interest

11. Exponential Decay

Description:
Genera form.
y= anfbx
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A suitable conclusion statement from such a relationship would be that:
y decreases exponentially with x; y decays exponentially with x; y o¢ n—x

Theratio of successive iterationsis a constant. The quantity is divided by afixed amount at regular intervals.
Appearance: large initial value followed by abrupt collapse, approaches positive x-axis asymptotically
Example(s): radioactive decay, discharging a capacitor, de-energizing an inductor

12. Exponential Approach Relationship

Description:

General form.

y=a(l-n™)+c

A suitable conclusion statement from such arelationship would be that...
y approaches afina value exponentially.
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Appearance: asymptotically approaches a horizontal line
Example(s): charging a capacitor, energizing an inductor, teaching (half the students get it, then half of the remaining
students get it, then half of the remaining students get it, and so on...)

13. Periodic Type Relationship

Description:

General form.

y=asn (bx +¢)

A suitable conclusion statement from such arelationship would be that:
y varies periodically with x; y is periodic with x.
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Appearance: A sine curve isthe prototypical example, not the only example. Any curve that repeatsitself is periodic.
Percelved Relationship and Curve Fitting

The lesson to be drawn from the over a dozen type of relationships, as described above, isthat curve fitting is not a
blind process. We cannot simply choose any relationship at whim in finding a mathematical fit to observed data. There
should some underlying reason for choosing a particular relationship to observed data.

The goal of curvefitting isto find a mathematical relationship that fits experimentally or empirically collected data
from observations. Either the scientist or engineer collecting the data has a prior notion of the kind of kind of
mathematical relationship that applies to the data, or he can generate a plot from the data to form ideas about the
relationship that may exist based on a plot of the data and the knowledge of the types of relationships described above.

Consider the following sample data:
x=[12345678910]
y=[2.622.91 3.13 4.29 4.99 4.65 5.40 63.85 6.75 7.39]

The plot of function f (x, y) is shown below:
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Asone can see, this plot is quite revealing. It shows the shape of alinear relationship which can be approximated by a
straight-line mathematical function such as f(x)=ax+b except for one very unusual datavalue of y at x=8. Such unusual
data values are usually caused by errors in observations as will be shown below.

In an effort to find ssimplest possible relationship, one may start with the mathematical representation of asimple linear
relationship:

f(x,y) = axtb
This simple form of relationship may produce a satisfactory outcome in many cases.

Example 1: Find the least-squares curve which fits the linear data:
(1, 2.6228), (2, 2.9125), (3, 3.1390), (4, 4.2952), (5, 4.9918),
(6, 4.6468), (7, 5.4008), (8, 63.853), (9, 6.7494), (10, 7.3864)

In MATLAB:

>> simplepolyfit
Type the x values as a vector enclosed within [ ]:
[12345678910]
Type the observed y values as a vector enclosed within [ ]:
[2.622.91 3.134.29 4.99 4.65 5.40 63.85 6.75 7.39]
coeffs =

2.2812 -1.9487
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Note:
The continuous line in blue is drawn through al observed data points. The dashed linein red isthe curve (line) derived
from the least squares method of minimizing deviations (called regression) from observed data.

The 8th point appears to be significantly different from all other values. It is called an outlier. This would amost
certainly appear to be an error in measurement or an error in recording. There are two possible solutions:

e Leavethe point out, or

e Re-samplethe value at the point x = 8.

If we do nothing, we get the following best-fitting line:

y(x) =2.28 x - 1.94.

If we remove the point as, shown below, and simply use the remaining nine points, we get the line
y(x) =059 x + 1.72.

>> simplepolyfit
Type the x values as a vector enclosed within [ ]:
[123456789]
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Type the observed y values as a vector enclosed within [ ]:
[2.622.91 3.134.29 4.99 4.65 5.40 6.75 7.39]
coeffs=

0.5917 1.7228

This second curve line (shown in --) fits better with observed data, indicating that not all observed values belong to the
population as awhole.

The MATLAB Code for producing the curve fitting outcomesis:

% simplepolyfit: Linear curve fitting with polynomial of degree 1
function fitsimple

clear dl

x=input (‘'Type the x values as a vector enclosed within [ ]:\n’);

y=input (‘'Type the observed y values as a vector enclosed within [ ]:\n’);
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n=1; % For polynoial of degree 1

% polyfit(x,y,n) returns the coefficients for a polynomial p(x) of degree n that is abest fit
% (in aleast-squares sense) for the datainyy.

% The coefficientsin p are in descending powers, and the length of pisn+1
coeffs=polyfit(x,y,1)

% Curvefitting yc values

% polyval(p,x) returns the value of apolynomial of degree n evaluated at x.

% Theinput argument p is avector of length n+1 whose elements are the coefficients
% in descending powers of the polynomial to be evaluated.

yc=polyval (coeffs,x);

plot(x,y,x,yc,--")

Correlation Coefficient
How well does your regression equation truly represent your set of data?

One of the ways to determine the answer to this question isto exam the correlation coefficient, r,, and the coefficient
of determination, r2.

Using the built-in function of MATLAB, the correlation coefficient for two cases aboveis:
10 data pointsincluding the outlier = 0.3678
9 data points excluding the outlier = 0.9732

r=1 for perfect correlation which israrely the case. r=0.9732 represents a good correlation. r=0.3678 is represents poor
correlation which understandabl e because one case of bad outlier.

Regression analysisis the study of the relationship between one or several predictors (independent variables) and
the response (dependent variable). To perform regression analysis on a dataset, a regression model is first developed.
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Then the best fit parameters are estimated using something like the least-square method. Finaly, the quality of the
model is assessed using one or more hypothesis tests.

From a mathematical point of view, there are two basic types of regression: linear and nonlinear. A model where the fit
parameters appear linearly in the Least Squares normal equationsis known as a"linear model"; otherwiseitis
"nonlinear”. In many scientific experiments, the regression model has only one or two predictors, and the aim of
regression isto fit acurve or a surface to the experimental data. So we may also refer to regression analysis as "curve
fitting" or "surface fitting."

Example 2: Nonlinear Mathematical Relationship Curve
Given data:

x=[12345]

y =[0.97.028.362.1122.4]

The plot from the is shown below:
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What can we surmise from about the possible applicable mathematical relation? A review of the thirteen relationship
patterns described in the preceding paragraphs, the likely choiceis a cubic power relationship such as:

f(x) = ax"

The curve fitting operation will determine the values of aand n, with someinitial guesses such as a=1 and n=3 based on
the shape of the plot for the data.

To carry out nonlinear fits, we need the following:

e A function to evaluate the model for agiven set of parameters and for a given time (thisis the curve we are fitting to
the data)

e A function to calculate the sum of the squares of the errors between the model and the data (for a given set of fitting
parameters)

e A routineto put everything together

MATLAB provides abuilt in functions called fminsearch (fun,x0,options) for this purpose. fminsearch finds the
minimum of ascalar function of several variables, starting with aninitial estimate. Thisis generally referred to as
unconstrained nonlinear optimization.

An example of using thisfunctionis:

x = fminsearch(fun,x0,options)

where x isafunction handle, fun creates the handle for input X0, and options are used for conveying related information
such astheinitial guesses for parameters aand n.

The resulting solution is shown below.

InMATLAB
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>> nonlinfitcubic

Mathemation relation to be used is: ax™n

Type the x values as a vector enclosed within [ ]:
[12345]

Type the observed y values as a vector enclosed within [ ]:
[0.97.028.362.1122.4]

Type an initial estimate for parameter a

1

Type an initial estimate for parameter n:

3

Value of parameter ais 1.026723

Vaue of parameter nis 2.969526

The r*2 value for thisfit is 0.999582
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The continues line shown in red is the mathematical function and blue markersin blue are the data values of function y.

Therefore, the fitted cubic power relationship is:
1.026723x>96926

More simply,

1.03x2%7

The MATLAB code for curve fitting using the given cubic power relationshipis:

function nonlinfitcubic

clear

disp('Mathematical relation to be used is. ax™n')
x=input('Type the x values as a vector enclosed within [ ]:\n’);

y=input(‘Type the observed y values as a vector enclosed within [ ]:\n");

a=input('Type an initial estimate for parameter a:\n’);
n=input('Type an initial estimate for parameter n:\n');
numpts=max(size(x));

p(1)=a; %guess for first parameter

p(2)=n; %guess for second parameter
zout=fminsearch(@(z) sumoferrs(z,x,y), p);
fprintf("Vaue of parameter ais %f\n',zout(1))
fprintf("Vaue of parameter nis %f\n',zout(2))
xplot=x(1):(x(end)-x(1))/(10* numpts):x(end);
yplot=curve(xplot,zout);

plot(x,y,+',xplot,yplot)

% The following lines attempt to assess the quality of the fit
datamean=mean(y);

errorsum=0;

othersum=0;
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for i=1:numpts
errorsum=errorsum-+(curve(x(i),zout)-y(i))"2;
othersum=othersum+(datamean-y(i))"2;

end

rsquared=1-errorsum/othersum;

fprintf(‘'The r*2 value for thisfit is %f\n',rsquared)

function f=curve(x,z)
a=z(1);

n=z(2);

f=a*x."n;

function f=sumoferrs(z, x, y)
f=sum((curve(x,2)-y)."2);

Example 3: Exponential Decay Curve Fitting
Y ears 1990-2010 scaled to 0-100
x=[010 20 30 40 50 60 70 80 90 100]

y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.422]
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This plot provides clues that the population growth isslow. Also, at year 1900 scaled to year 0O, the function valueis
around 75. If we substitute x=0 in the mathematical relation f(x)=ke™, wefindy is approximately 75. That isour guess
for k. Also, at x=10 with k=75, the value of parameter 'a hasto bejust afraction for the data value on the graph. Thus
our guess for a=.1.

INnMATLAB:
>> nonlinfitexp
Mathematical relation to be used is: keMat

Type the x values as a vector enclosed within [ ]:

[010 20 3040 50 60 70 80 90 100]

Type the observed y values as a vector enclosed within [ ]:

[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.422]
Type an initial estimate for parameter k:

75

Type an initial estimate for parameter a

1

Vaue of parameter k is 82.412865

Vaue of parameter ais 0.012432

The r2 value for thisfit is 0.995880
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function nonlinfitexp

clear al

disp('Mathematical relation to be used is: ke™')
x=input('Type the x values as a vector enclosed within [ ]:\n’);

y=input(‘Type the observed y values as a vector enclosed within [ ]:\n");

k=input('Type an initial estimate for parameter k:\n');

a=input('Type an initial estimate for parameter a:\n');

numpts=max(size(x));

p(1)=k; %guess for first parameter

p(2)=a; %oguess for second parameter

zout=fminsearch(@(z) sumoferrs(z,x,y), p);

fprintf("Vaue of parameter ais %f\n',zout(1))

fprintf("Vaue of parameter nis %f\n',zout(2))

xplot=x(1):(x(end)-x(1))/(10* numpts):x(end);

yplot=curve(xplot,zout);

plot(x,y,+',xplot,yplot)

% The following lines attempt to assess the quality of the fit

datamean=mean(y);

errorsum=0;

othersum=0;

for i=1:numpts
errorsum=errorsum-+(curve(x(i),zout)-y(i))"2;
othersum=othersum+(datamean-y(i))"2;

end

rsquared=1-errorsum/othersum;

fprintf(‘'The r*2 value for thisfit is %f\n',rsquared)

function f=curve(x,z)

31



a=z(1);
n=2(2);
f=k*exp(a*x);

function f=sumoferrs(z, x, y)
f=sum((curve(x,2)-y)."2);

Example 4. For the data shown below, as a result of measurements on the following data was gathered for the applied
force and resulting deflection. Find a suitable mathematical relationship fitting this data.

x =[11 31 64 112 176 259 362] the independent data set - force
y =[23456 7 8] the dependent data set - deflection

400
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Engineering Side Story about Frictional Resistance

Frictional resistance to the relative motion of two solid objectsis usually proportional to the force which presses the
surfaces together as well as the roughness of the surfaces. Since it is the force perpendicular or "normal” to the surfaces
which affects the frictional resistance, thisforceistypically called the "normal force" and designated by N. The
frictional resistance force may then be written:

F= uN, where

u = coefficient of friction which is different when the objects are to move from a stationary state (static friction) than
when objects are in motion (kinetic friction). Y ou may view the scenario tire friction when the car starts to move versus
when it isin motion.

Thefrictional forceis aso presumed to be proportional to the coefficient of friction. However, the amount of force
required to move an object starting from rest is usually greater than the force required to keep it moving at constant
velocity onceit is started. Therefore two coefficients of friction are sometimes quoted for a given pair of surfaces - a
coefficient of static friction and a coefficient of kinetic friction. The force expression above can be called the standard
model of surface friction and is dependent upon several assumptions about friction.

While this general description of friction, referred to as the standard model, has practica utility, it isby no means a
precise description of friction. Friction isin fact a very complex phenomenon which cannot be represented by asimple
model. Almost every simple statement you make about friction can be countered with specific examples to the contrary.
Saying that rougher surfaces experience more friction sounds safe enough - two pieces of coarse sandpaper will
obviously be harder to move relative to each other than two pieces of fine sandpaper. But if two pieces of flat metal are
made progressively smoother, you will reach a point where the resistance to relative movement increases. If you make
them very flat and smooth, and remove all surface contaminants in a vacuum, the smooth flat surfaces will actually
adhere to each other, making what is called a"cold weld".
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Once you reach a certain degree of mechanical smoothness, the frictional resistance is found to depend on the nature of
the molecular forcesin the area of contact, so that substances of comparable "smoothness" can have significantly
different coefficients of friction.

An easily observed counterexample to the idea that rougher surfaces exhibit more friction is that of ground glass versus
smooth glass. Smooth glass plates in contact exhibit much more frictional resistance to relative motion than the rougher
ground glass.
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Frictional resistance forces are typically proportional to the force which presses the surfaces together. This force which
will affect frictional resistance is the component of applied force which acts perpendicular or "normal™ to the surfaces
which arein contact and is typically referred to as the normal force. In many common situations, the normal forceisjust
the weight of the object which is sitting on some surface, but if an object is on an incline or has components of applied

force perpendicular to the surface, then it is not equal to the weight.

The above cases are the commonly encountered situations for objects at rest or in straight line motion. For curved
motion, there are cases like a car on a banked curve where the normal force is determined by the dynamics of the
situation. In that case, the normal force depends upon the speed of the car as well as the angle of the bank.
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Example 5. Given the data as shown below, find f(N,F) corresponding to f(x,y)
x=N=[01121 27 43 52]
y=F=[0246 8 10]

InMATLAB:

>> plotter

Type the x values as a vector enclosed within [ ]:

[011 2127 4352]

Type the observed y values as a vector enclosed within [ ]:
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[0246810]

The plotter script is very simple but convenient:

% Plotter.m

x=input('Type the x values as a vector enclosed within [ ]:\n’);
y=input('Type the observed y values as a vector enclosed within [ ]:\n’);

plot(x,y,'0',X,y)

Plot of thegiven (N,F) or (x,y) is shown below:

o

o - N w IS & [ ~ @ ©
T T T T T T T T T

InMATLAB:

>> polyfitn

Type the x values as a vector enclosed within [ ]:
[011 2127 4352]
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Type the observed y values as a vector enclosed within [ ]:

[0246810]
Type the desired polynomial degree:
1
coeffs =
0.1914 0.0874

The correlation coefficient is:
0.9949

12

10

50

60

Theplot of thederived curve, fo(x,y) showsy near zero a x=0, and the coefficient of friction isthe dope or gradient vaue

of 0.1914

y=fo(x,y)=F= 0.1914R + 0.0874
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Example6:
In an experiment to verify Ohm's Law, the voltage and current acting on aresstor was measured and the following results
obtained.

\Y 0 2 4 6 8 10
I 0 0.19 042 062 075 0.92

Assuming the law should belinear, find the best fit straight-linelaw and check the ansverswith using Excel. (Caculation
givesm (gradient, dope) =10.73, C (intercept) = 0.184 Exced gives same answers)

x=[0.19 .42 .62 .75 .92]
y=[0246810]

Theplot of datais:

=}

o - N © IS o ) ~ @ ©
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0.1 02 03 04 05 06 07 08 09 1

derived gradient=10.73, intercept=.184

=}
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In MATLAB:

>> polyfitn
Type the x values as a vector enclosed within [ ]:
[0.19 .42 .62 .75 .92

Type the observed y values as a vector enclosed within [ ]:

[0246810]
Type the desired polynomial degree:
1
coeffs =
10.7261 -0.1843

The correlation coefficient is:
0.9965
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The script for an degree polynomial fit is:

% simplepolyfit: Linear curve fitting with polynomial of degree 1

function fitsimple

clear dl

x=input('Type the x values as a vector enclosed within [ ]:\n’);
y=input('Type the observed y values as a vector enclosed within [ ]:\n’);
n=input('Type the desired polynomial degree:\n');

% polyfit(x,y,n) returns the coefficients for a polynomial p(x) of degree n that is abest fit
% (in aleast-squares sense) for the datainyy.

% The coefficientsin p are in descending powers, and the length of pisn+1
coeffs=polyfit(x,y,n)

% Curvefitting yc values

% polyval(p,x) returns the value of apolynomial of degree n evaluated at x.
% Theinput argument p is avector of length n+1 whose elements are the coefficients
% in descending powers of the polynomial to be evaluated.

yc=polyval (coeffs,x);

plot(x,y,x,yc,--")

% Correlation coefficient r

r=corrcoef(y,yc);

disp(‘The correlation coefficient is:")

rr=min(r);

disp(rr(1));

Example 7: In an experiment to verify Ohm's Law, the voltage and current acting on ares stor was measured and the
following results obtaned.

\% 0 2 4 6 8 10

I 0 0.19 042 062 075 092



Assuming thelaw should belinear, find the best fit straight line.

10 T T T T T T T T T£>+

x=1=1[0.19.42 .62 .75 .92]
y=V=[02468 10]

INnMATLAB

>> smplepol yfit

Typethe x vaues as a vector enclosed within [ ]:

[0.19 .42 .62 .75 .92]

Type the observed y values as a vector enclosed within [ ]:
[0246810]
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coeffs=
10.7261 -0.1843

The correlation coefficient is:
0.9965




Example 8:
x=[-1.5-1-50 1015 2 25 3]
y=[10.1 46 -5 -45 -58 -4 -2 2 7.6]

12

Fitted curve, Polynomid of order 2
y= f(X,y)=2.94x?-4.98x-3.81

INnMATLAB:
>> polyfitn



Typethe x values as a vector enclosed within|[ ]:
[(15-1-5010 15225 3]

Typethe observed y values as a vector enclosed within| ]:

[10.1 46 -5 -45 -58 -4 -2 2 7.6]
Typethe desired polynomia degree:
2

coeffs=
29177 -49464 -3.7484

The corrdation coefficient is:
0.9976
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Example9: In an experiment to measure the distance abody movesin timet seconds when dropped from aheght the
following results were obtained. It isthought that the results should obey the law of gravity such that s= gt %2 wheregis
the gravitationa constant. Obtain the best fit and determine the value of g.

timgt(seoconds),x=[0015 02 02 03 035 04 045 0.5
distance, s (meters), y=[0 01 02 03 04 06 08 10 17
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08

06

0(} 1 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045

For s=gt?/2, we may provide aninitial guess of a=1 and n=2.

In MATLAB:
>> nonlinfit
Type the x values as a vector enclosed within [ ]:

0.5
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[0 015 02 025 03 035 04 045 0.5]
Type the observed y values as a vector enclosed within [ ]:
[0 01 02 03 04 06 08 10 12]
Type an initia estimate for parameter a:

1

Type an initial estimate for parameter n:

2

The r*2 value for thisfit is 0.998219

The script for nonlinfitis:

function nonlinfit

clear all

x=input('Type the x values as a vector enclosed within [ ]:\n’);
y=input(‘Type the observed y values as a vector enclosed within [ ]:\n’);
a=input('Type an initia estimate for parameter a\n");

n=input('Type an initia estimate for parameter n:\n');
numpts=max(size(x));

zin(1)=1; %guess for first parameter

zin(2)=3; %guess for second parameter

zout=fminsearch(@(z) sumoferrs(z,x,y), zin);
xplot=x(1):(x(end)-x(1))/(10* numpts):x(end);
yplot=curve(xplot,zout);

plot(x,y,'+',xplot,yplot)

% The following lines attempt to assess the quality of the fit
datamean=mean(y);

errorsum=0;

othersum=0;
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for i=1:numpts
errorsum=errorsum-+(curve(x(i),zout)-y(i))"2;
othersum=othersum-+(datamean-y(i))"2;

end

rsquared=1-errorsum/othersum;

fprintf("The r"2 value for thisfit is %f\n',rsquared)

function f=curve(x,z)

a=z(1);

n=z(2);

f=a*x.”n;

function f=sumoferrs(z, X, y)

f=sum((curve(x,z)-y)."2);
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http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/CurveFitting
http://www.bioe.umd.edu/~artjohns/software/curvefit/curvefitting. pdf
https://en.wikipedia.org/wiki/Curve_fitting

http://blanchard.ep.wisc.edu/PublicM atlab/Fits/Fits. pdf
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http://blanchard.ep.wisc.edu/PublicM atlab/

http://blanchard.ep.wisc.edu/PublicM atlab

http://www.mathworks.com/products/index.html ;jsessioni d=f43d14ef 3fe57c4e80fc54ch2426
http://physics.info/curve-fitting/

https:.//ece.uwaterl0o.ca/~dwharder/Numerical Analysis/O6L eastSquares/linear/
http://hyperphysics.phy-astr.gsu.edu/hbase/frict.html

http://hyperphysi cs.phy-astr.gsu.edu/hbase/mechani cs/frictire.ntml#cl
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